![]() |
Welcome to ShortScience.org! |
![]() ![]() ![]() |
[link]
This work deals with rotation equivariant convolutional filters. The idea is that when you rotate an image you should not need to relearn new filters to deal with this rotation. First we can look at how convolutions typically handle rotation and how we would expect a rotation invariant solution to perform below: | | | | - | - | | https://i.imgur.com/cirTi4S.png | https://i.imgur.com/iGpUZDC.png | | | | | The method computes all possible rotations of the filter which results in a list of activations where each element represents a different rotation. From this list the maximum is taken which results in a two dimensional output for every pixel (rotation, magnitude). This happens at the pixel level so the result is a vector field over the image. https://i.imgur.com/BcnuI1d.png We can visualize their degree selection method with a figure from https://arxiv.org/abs/1603.04392 which determined the rotation of a building: https://i.imgur.com/hPI8J6y.png We can also think of this approach as attention \cite{1409.0473} where they attend over the possible rotations to obtain a score for each possible rotation value to pass on. The network can learn to adjust the rotation value to be whatever value the later layers will need. ------------------------ Results on [Rotated MNIST](http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations) show an impressive improvement in training speed and generalization error: https://i.imgur.com/YO3poOO.png ![]() |
[link]
Munoz-Gonzalez et al. propose a multi-class data poisening attack against deep neural networks based on back-gradient optimization. They consider the common poisening formulation stated as follows: $ \max_{D_c} \min_w \mathcal{L}(D_c \cup D_{tr}, w)$ where $D_c$ denotes a set of poisened training samples and $D_{tr}$ the corresponding clea dataset. Here, the loss $\mathcal{L}$ used for training is minimized as the inner optimization problem. As result, as long as learning itself does not have closed-form solutions, e.g., for deep neural networks, the problem is computationally infeasible. To resolve this problem, the authors propose using back-gradient optimization. Then, the gradient with respect to the outer optimization problem can be computed while only computing a limited number of iterations to solve the inner problem, see the paper for detail. In experiments, on spam/malware detection and digit classification, the approach is shown to increase test error of the trained model with only few training examples poisened. Also find this summary at [davidstutz.de](https://davidstutz.de/category/reading/). ![]() |
[link]
# Object detection system overview. https://i.imgur.com/vd2YUy3.png 1. takes an input image, 2. extracts around 2000 bottom-up region proposals, 3. computes features for each proposal using a large convolutional neural network (CNN), and then 4. classifies each region using class-specific linear SVMs. * R-CNN achieves a mean average precision (mAP) of 53.7% on PASCAL VOC 2010. * On the 200-class ILSVRC2013 detection dataset, R-CNN’s mAP is 31.4%, a large improvement over OverFeat , which had the previous best result at 24.3%. ## There is a 2 challenges faced in object detection 1. localization problem 2. labeling the data 1 localization problem : * One approach frames localization as a regression problem. they report a mAP of 30.5% on VOC 2007 compared to the 58.5% achieved by our method. * An alternative is to build a sliding-window detector. considered adopting a sliding-window approach increases the number of convolutional layers to 5, have very large receptive fields (195 x 195 pixels) and strides (32x32 pixels) in the input image, which makes precise localization within the sliding-window paradigm. 2 labeling the data: * The conventional solution to this problem is to use unsupervised pre-training, followed by supervise fine-tuning * supervised pre-training on a large auxiliary dataset (ILSVRC), followed by domain specific fine-tuning on a small dataset (PASCAL), * fine-tuning for detection improves mAP performance by 8 percentage points. * Stochastic gradient descent via back propagation was used to effective for training convolutional neural networks (CNNs) ## Object detection with R-CNN This system consists of three modules * The first generates category-independent region proposals. These proposals define the set of candidate detections available to our detector. * The second module is a large convolutional neural network that extracts a fixed-length feature vector from each region. * The third module is a set of class specific linear SVMs. Module design 1 Region proposals * which detect mitotic cells by applying a CNN to regularly-spaced square crops. * use selective search method in fast mode (Capture All Scales, Diversification, Fast to Compute). * the time spent computing region proposals and features (13s/image on a GPU or 53s/image on a CPU) 2 Feature extraction. * extract a 4096-dimensional feature vector from each region proposal using the Caffe implementation of the CNN * Features are computed by forward propagating a mean-subtracted 227x227 RGB image through five convolutional layers and two fully connected layers. * warp all pixels in a tight bounding box around it to the required size * The feature matrix is typically 2000x4096 3 Test time detection * At test time, run selective search on the test image to extract around 2000 region proposals (we use selective search’s “fast mode” in all experiments). * warp each proposal and forward propagate it through the CNN in order to compute features. Then, for each class, we score each extracted feature vector using the SVM trained for that class. * Given all scored regions in an image, we apply a greedy non-maximum suppression (for each class independently) that rejects a region if it has an intersection-over union (IoU) overlap with a higher scoring selected region larger than a learned threshold. ## Training 1 Supervised pre-training: * pre-trained the CNN on a large auxiliary dataset (ILSVRC2012 classification) using image-level annotations only (bounding box labels are not available for this data) 2 Domain-specific fine-tuning. * use the stochastic gradient descent (SGD) training of the CNN parameters using only warped region proposals with learning rate of 0.001. 3 Object category classifiers. * use intersection-over union (IoU) overlap threshold method to label a region with The overlap threshold of 0.3. * Once features are extracted and training labels are applied, we optimize one linear SVM per class. * adopt the standard hard negative mining method to fit large training data in memory. ### Results on PASCAL VOC 201012 1 VOC 2010 * compared against four strong baselines including SegDPM, DPM, UVA, Regionlets. * Achieve a large improvement in mAP, from 35.1% to 53.7% mAP, while also being much faster https://i.imgur.com/0dGX9b7.png 2 ILSVRC2013 detection. * ran R-CNN on the 200-class ILSVRC2013 detection dataset * R-CNN achieves a mAP of 31.4% https://i.imgur.com/GFbULx3.png #### Performance layer-by-layer, without fine-tuning 1 pool5 layer * which is the max pooled output of the network’s fifth and final convolutional layer. *The pool5 feature map is 6 x6 x 256 = 9216 dimensional * each pool5 unit has a receptive field of 195x195 pixels in the original 227x227 pixel input 2 Layer fc6 * fully connected to pool5 * it multiplies a 4096x9216 weight matrix by the pool5 feature map (reshaped as a 9216-dimensional vector) and then adds a vector of biases 3 Layer fc7 * It is implemented by multiplying the features computed by fc6 by a 4096 x 4096 weight matrix, and similarly adding a vector of biases and applying half-wave rectification #### Performance layer-by-layer, with fine-tuning * CNN’s parameters fine-tuned on PASCAL. * fine-tuning increases mAP by 8.0 % points to 54.2% ### Network architectures * 16-layer deep network, consisting of 13 layers of 3 _ 3 convolution kernels, with five max pooling layers interspersed, and topped with three fully-connected layers. We refer to this network as “O-Net” for OxfordNet and the baseline as “T-Net” for TorontoNet. * RCNN with O-Net substantially outperforms R-CNN with TNet, increasing mAP from 58.5% to 66.0% * drawback in terms of compute time, with in terms of compute time, with than T-Net. 1 The ILSVRC2013 detection dataset * dataset is split into three sets: train (395,918), val (20,121), and test (40,152) #### CNN features for segmentation. * full R-CNN: The first strategy (full) ignores the re region’s shape and computes CNN features directly on the warped window. Two regions might have very similar bounding boxes while having very little overlap. * fg R-CNN: the second strategy (fg) computes CNN features only on a region’s foreground mask. We replace the background with the mean input so that background regions are zero after mean subtraction. * full+fg R-CNN: The third strategy (full+fg) simply concatenates the full and fg features https://i.imgur.com/n1bhmKo.png ![]()
1 Comments
|
[link]
This paper presents a novel layer that can be used in convolutional neural networks. A spatial transformer layer computes re-sampling points of the signal based on another neural network. The suggested transformations include scaling, cropping, rotations and non-rigid deformation whose paramerters are trained end-to-end with the rest of the model. The resulting re-sampling grid is then used to create a new representation of the underlying signal through bi-linear or nearest neighbor interpolation. This has interesting implications: the network can learn to co-locate objects in a set of images that all contain the same object, the transformation parameter localize the attention area explicitly, fine data resolution is restricted to areas important for the task. Furthermore, the model improves over previous state-of-the-art on a number of tasks. The layer has one mini neural network that regresses on the parameters of a parametric transformation, e.g. affine), then there is a module that applies the transformation to a regular grid and a third more or less "reads off" the values in the transformed positions and maps them to a regular grid, hence under-forming the image or previous layer. Gradients for back-propagation in a few cases are derived. The results are mostly of the classic deep learning variety, including mnist and svhn, but there is also the fine-grained birds dataset. The networks with spatial transformers seem to lead to improved results in all cases. ![]() |
[link]
This paper presents a neat method for learning spatio-temporal representations from videos. Convolutional features from intermediate layers of a CNN are extracted, to preserve spatial resolution, and fed into a modified GRU that can (in theory) learn infinite temporal dependencies. Main contributions: - Their variant of GRU (called GRU-RCN) uses convolution operations instead of fully-connected units. - This exploits the local correlation in image frames across spatial locations. - Features from pool2, pool3, pool4, pool5 are extracted and fed into independent GRU-RCNs. Hidden states at last time step are now feature volumes, which are average pooled to reduce to 1x1 spatially, and fed into a linear + softmax classifier. Outputs from each of these classifiers is averaged to get the final prediction. - Other variants that they experiment with are bidirectional GRU-RCNs and stacked GRU-RCNs i.e. GRU-RCNs with connections between them (with maxpool operations for dimensionality reduction). - Bidirectional GRU-RCNs perform the best. - Stacked GRU-RCNs perform worse than the other variants, probably because of limited data. - They evaluate their method on action recognition and video captioning, and show significant improvements on a CNN+RNN baseline, comparing favorably with other state-of-the-art methods (like C3D). ## Strengths - The idea is simple and elegant. Earlier methods for learning video representations typically used 3D convolutions (k x k x T filters), which suffered from finite temporal capacity, or RNNs sitting on top of last-layer CNN features, which is unable to capture finer spatial resolution. In theory, this formulation solves both. - Changing fully-connected operations to convolutions has the additional advantage of requiring lesser parameters (n\_input x n\_output x input\_width x input\_height v/s n\_input x n\_output x k\_width x k\_height). ![]() |