Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification
Yue Yang
and
Artemis Panagopoulou
and
Shenghao Zhou
and
Daniel Jin
and
Chris Callison-Burch
and
Mark Yatskar
arXiv e-Print archive - 2022 via Local arXiv
Keywords:
cs.CV, cs.CL
First published: 2024/11/23 (just now) Abstract: Concept Bottleneck Models (CBM) are inherently interpretable models that
factor model decisions into human-readable concepts. They allow people to
easily understand why a model is failing, a critical feature for high-stakes
applications. CBMs require manually specified concepts and often under-perform
their black box counterparts, preventing their broad adoption. We address these
shortcomings and are first to show how to construct high-performance CBMs
without manual specification of similar accuracy to black box models. Our
approach, Language Guided Bottlenecks (LaBo), leverages a language model,
GPT-3, to define a large space of possible bottlenecks. Given a problem domain,
LaBo uses GPT-3 to produce factual sentences about categories to form candidate
concepts. LaBo efficiently searches possible bottlenecks through a novel
submodular utility that promotes the selection of discriminative and diverse
information. Ultimately, GPT-3's sentential concepts can be aligned to images
using CLIP, to form a bottleneck layer. Experiments demonstrate that LaBo is a
highly effective prior for concepts important to visual recognition. In the
evaluation with 11 diverse datasets, LaBo bottlenecks excel at few-shot
classification: they are 11.7% more accurate than black box linear probes at 1
shot and comparable with more data. Overall, LaBo demonstrates that inherently
interpretable models can be widely applied at similar, or better, performance
than black box approaches.