![]() |
Welcome to ShortScience.org! |
![]() ![]() ![]() |
[link]
## General Framework Extends T-REX (see [summary](https://www.shortscience.org/paper?bibtexKey=journals/corr/1904.06387&a=muntermulehitch)) so that preferences (rankings) over demonstrations are generated automatically (back to the common IL/IRL setting where we only have access to a set of unlabeled demonstrations). Also derives some theoretical requirements and guarantees for better-than-demonstrator performance. ## Motivations * Preferences over demonstrations may be difficult to obtain in practice. * There is no theoretical understanding of the requirements that lead to outperforming demonstrator. ## Contributions * Theoretical results (with linear reward function) on when better-than-demonstrator performance is possible: 1- the demonstrator must be suboptimal (room for improvement, obviously), 2- the learned reward must be close enough to the reward that the demonstrator is suboptimally optimizing for (be able to accurately capture the intent of the demonstrator), 3- the learned policy (optimal wrt the learned reward) must be close enough to the optimal policy (wrt to the ground truth reward). Obviously if we have 2- and a good enough RL algorithm we should have 3-, so it might be interesting to see if one can derive a requirement from only 1- and 2- (and possibly a good enough RL algo). * Theoretical results (with linear reward function) showing that pairwise preferences over demonstrations reduce the error and ambiguity of the reward learning. They show that without rankings two policies might have equal performance under a learned reward (that makes expert's demonstrations optimal) but very different performance under the true reward (that makes the expert optimal everywhere). Indeed, the expert's demonstration may reveal very little information about the reward of (suboptimal or not) unseen regions which may hurt very much the generalizations (even with RL as it would try to generalize to new states under a totally wrong reward). They also show that pairwise preferences over trajectories effectively give half-space constraints on the feasible reward function domain and thus may decrease exponentially the reward function ambiguity. * Propose a practical way to generate as many ranked demos as desired. ## Additional Assumption Very mild, assumes that a Behavioral Cloning (BC) policy trained on the provided demonstrations is better than a uniform random policy. ## Disturbance-based Reward Extrapolation (D-REX)   They also show that the more noise added to the BC policy the lower the performance of the generated trajs. ## Results Pretty much like T-REX. ![]() |
[link]
This was a really cool-to-me paper that asked whether contrastive losses, of the kind that have found widespread success in semi-supervised domains, can add value in a supervised setting as well. In a semi-supervised context, contrastive loss works by pushing together the representations of an "anchor" data example with an augmented version of itself (which is taken as a positive or target, because the image is understood to not be substantively changed by being augmented), and pushing the representation of that example away from other examples in the batch, which are negatives in the sense that they are assumed to not be related to the anchor image. This paper investigates whether this same structure - of training representations of positives to be close relative to negatives - could be expanded to the supervised setting, where "positives" wouldn't just mean augmented versions of a single image, but augmented versions of other images belonging to the same class. This would ideally combine the advantages of self-supervised contrastive loss - that explicitly incentivizes invariance to augmentation-based changes - with the advantages of a supervised signal, which allows the representation to learn that it should also see instances of the same class as close to one another. https://i.imgur.com/pzKXEkQ.png To evaluate the performance of this as a loss function, the authors first train the representation - either with their novel supervised contrastive loss SupCon, or with a control cross-entropy loss - and then train a linear regression with cross-entropy on top of that learned representation. (Just because, structurally, a contrastive loss doesn't lead to assigning probabilities to particular classes, even if it is supervised in the sense of capturing information relevant to classification in the representation) The authors investigate two versions of this contrastive loss, which differ, as shown below, in terms of the relative position of the sum and the log operation, and show that the L_out version dramatically outperforms (and I mean dramatically, with a top-one accuracy of 78.7 vs 67.4%). https://i.imgur.com/X5F1DDV.png The authors suggest that the L_out version is superior in terms of training dynamics, and while I didn't fully follow their explanation, I believe it had to do with L_out version doing its normalization outside of the log, which meant it actually functioned as a multiplicative normalizer, as opposed to happening inside the log, where it would have just become an additive (or, really, subtractive) constant in the gradient term. Due to this stronger normalization, the authors positive the L_out loss was less noisy and more stable. Overall, the authors show that SupCon consistently (if not dramatically) outperforms cross-entropy when it comes to final accuracy. They also show that it is comparable in transfer performance to a self-supervised contrastive loss. One interesting extension to this work, which I'd enjoy seeing more explored in the future, is how the performance of this sort of loss scales with the number of different augmentations that performed of each element in the batch (this work uses two different augmentations, but there's no reason this number couldn't be higher, which would presumably give additional useful signal and robustness?) ![]() |
[link]
This is a nice little empirical paper that does some investigation into which features get learned during the course of neural network training. To look at this, it uses a notion of "decodability", defined as the accuracy to which you can train a linear model to predict a given conceptual feature on top of the activations/learned features at a particular layer. This idea captures the amount of information about a conceptual feature that can be extracted from a given set of activations. They work with two synthetic datasets. 1. Trifeature: Generated images with a color, shape, and texture, which can be engineered to be either entirely uncorrelated or correlated with each other to varying degrees. 2. Navon: Generated images that are letters on the level of shape, and are also composed of letters on the level of texture The first thing the authors investigate is: to what extent are the different properties of these images decodable from their representations, and how does that change during training? In general, decodability is highest in lower layers, and lowest in higher layers, which makes sense from the perspective of the Information Processing Inequality, since all the information is present in the pixels, and can only be lost in the course of training, not gained. They find that decodability of color is high, even in the later layers untrained networks, and that the decodability of texture and shape, while much less high, is still above chance. When the network is trained to predict one of the three features attached to an image, you see the decodability of that feature go up (as expected), but you also see the decodability of the other features go down, suggesting that training doesn't just involve amplifying predictive features, but also suppressing unpredictive ones. This effect is strongest in the Trifeature case when training for shape or color; when training for texture, the dampening effect on color is strong, but on shape is less pronounced. https://i.imgur.com/o45KHOM.png The authors also performed some experiments on cases where features are engineered to be correlated to various degrees, to see which of the predictive features the network will represent more strongly. In the case where two features are perfectly correlated (and thus both perfectly predict the label), the network will focus decoding power on whichever feature had highest decodability in the untrained network, and, interestingly, will reduce decodability of the other feature (not just have it be lower than the chosen feature, but decrease it in the course of training), even though it is equally as predictive. https://i.imgur.com/NFx0h8b.png Similarly, the network will choose the "easy" feature (the one more easily decodable at the beginning of training) even if there's another feature that is slightly *more* predictive available. This seems quite consistent with the results of another recent paper, Shah et al, on the Pitfalls of Simplicity Bias in neural networks. The overall message of both of these experiments is that networks generally 'put all their eggs in one basket,' so to speak, rather than splitting representational power across multiple features. There were a few other experiments in the paper, and I'd recommend reading it in full - it's quite well written - but I think those convey most of the key insights for me. ![]() |
[link]
Offline reinforcement learning is potentially high-value thing for the machine learning community learn to do well, because there are many applications where it'd be useful to generate a learnt policy for responding to a dynamic environment, but where it'd be too unsafe or expensive to learn in an on-policy or online way, where we continually evaluate our actions in the environment to test their value. In such settings, we'd like to be able to take a batch of existing data - collected from a human demonstrator, or from some other algorithm - and be able to learn a policy from those pre-collected transitions, without being able to query the environment further by taking arbitrary actions. There are two broad strategies for learning a policy from precollected transitions. One is to simply learn to mimic the action policy used by the demonstrator, predicting the action the demonstrator would take in a given state, without making use of reward data at all. This is Behavioral Cloning, and has the advantage of being somewhat more conservative (in terms of not experimenting with possibly-unsafe-or-low-reward actions the demonstrator never took), but this is also a disadvantage, because it's not possible to get higher reward than the demonstrator themselves got if you're simply copying their behavior. Another approach is to learn a Q function - estimating the value of a given action in a given state - using the reward data from the precollected transitions. This can also have some downsides, mostly in the direction of overconfidence. Q value Temporal Difference learning works by using the current reward added to the max Q value over possible next actions as the target for the current-state Q estimate. This tends to lead to overestimates, because regression to the mean effects mean that the highest value Q estimates are disproportionately likely to be noisy (possibly because they correspond to an action with little data in the demonstrator dataset). In on-policy Q learning, this is less problematic, because the agent can take the action associated with their noisily inaccurate estimate, and as a result get more data for that action, and get an estimate that is less noisy in future. But when we're in a fully offline setting, all our learning is completed before we actually start taking actions with our policy, so taking high-uncertainty actions isn't a valuable source of new information, but just risky. The approach suggested by this DeepMind paper - Critic Regularized Regression, or CRR - is essentially a synthesis of these two possible approaches. The method learns a Q function as normal, using temporal difference methods. The distinction in this method comes from how to get a policy, given a learned Q function. Rather than simply taking the action your Q estimate says is highest-value at a particular point, CRR optimizes a policy according to the formula shown below. The f() function is a stand-in for various potential functions, all of which are monotonic with respect to the Q function, meaning they increase when the Q function does. https://i.imgur.com/jGmhYdd.png This basically amounts to a form of a behavioral cloning loss (with the part that maximizes the probability under your policy of the actions sampled from the demonstrator dataset), but weighted or, as the paper terms it, filtered, by the learned Q function. The higher the estimated q value for a transition, the more weight is placed on that transition from the demo dataset having high probability under your policy. Rather than trying to mimic all of the actions of the demonstrator, the policy preferentially tries to mimic the demonstrator actions that it estimates were particularly high-quality. Different f() functions lead to different kinds of filtration. The `binary`version is an indicator function for the Advantage of an action (the Q value for that action at that state minus some reference value for the state, describing how much better the action is than other alternatives at that state) being greater than zero. Another, `exp`, uses exponential weightings which do a more "soft" upweighting or downweighting of transitions based on advantage, rather than the sharp binary of whether an actions advantage is above 1. The authors demonstrate that, on multiple environments from three different environment suites, CRR outperforms other off-policy baselines - either more pure behavioral cloning, or more pure RL - and in many cases does so quite dramatically. They find that the sharper binary weighting scheme does better on simpler tasks, since the trade-off of fewer but higher-quality samples to learn from works there. However, on more complex tasks, the policy benefits from the exp weighting, which still uses and learns from more samples (albeit at lower weights), which introduces some potential mimicking of lower-quality transitions, but at the trade of a larger effective dataset size to learn from. ![]() |
[link]
This work attempts to use meta-learning to learn an update rule for a reinforcement learning agent. In this context, "learning an update rule" means learning the parameters of an LSTM module that takes in information about the agent's recent reward and current model and outputs two values - a scalar and a vector - that are used to update the agent's model. I'm not going to go too deep into meta-learning here, but, at a high level, meta learning methods optimize parameters governing an agent's learning, and, over the course of many training processes over many environments, optimize those parameters such that the reward over the full lifetime of training is higher. To be more concrete, the agent in a given environment learns two things: - A policy, that is, a distribution over predicted action given a state. - A "prediction vector". This fits in the conceptual slot where most RL algorithms would learn some kind of value or Q function, to predict how much future reward can be expected from a given state. However, in this context, this vector is *very explicitly* not a value function, but is just a vector that the agent-model generates and updates. The notion here is that maybe our human-designed construction of a value function isn't actually the best quantity for an agent to be predicting, and, if we meta-learn, we might find something more optimal. I'm a little bit confused about the structure of this vector, but I think it's *intended* to be a categorical 1-of-m prediction At each step, after acting in the environment, the agent passes to an LSTM: - The reward at the step - A binary of whether the trajectory is done - The discount factor - The probability of the action that was taken from state t - The prediction vector evaluated at state t - The prediction vector evaluated at state t+1 Given that as input (and given access to its past history from earlier in the training process), the LSTM predicts two things: - A scalar, pi-hat - A prediction vector, y-hat These two quantities are used to update the existing policy and prediction model according to the rule below. https://i.imgur.com/xx1W9SU.png Conceptually, the scalar governs whether to increase or decrease probability assigned to the taken action under the policy, and y-hat serves as a target for the prediction vector to be pulled towards. An important thing to note about the LSTM structure is that none of the quantities it takes as input are dependent on the action or observation space of the environment, so, once it is learned it can (hopefully) generalize to new environments. Given this, the basic meta learning objective falls out fairly easily - optimize the parameters of the LSTM to maximize lifetime reward, taken in expectation over training runs. However, things don't turn out to be quite that easy. The simplest version of this meta-learning objective is wildly unstable and difficult to optimize, and the authors had to add a number of training hacks in order to get something that would work. (It really is dramatic, by the way, how absolutely essential these are to training something that actually learns a prediction vector). These include: - A entropy bonus, pushing the meta learned parameters to learn policies and prediction vectors that have higher entropy (which is to say: are less deterministic) - An L2 penalty on both pi-hat and y-hat - A removal of the softmax that had originally been originally taken over the k-dimensional prediction vector categorical, and switching that target from a KL divergence to a straight mean squared error loss. As far as I can tell, this makes the prediction vector no longer actually a 1-of-k categorical, but instead just a continuous vector, with each value between 0 and 1, which makes it make more sense to think of k separate binaries? This I was definitely confused about in the paper overall https://i.imgur.com/EL8R1yd.png With the help of all of these regularizers, the authors were able to get something that trained, and that appeared to be able to perform comparably to or better than A2C - the human-designed baseline - across the simple grid-worlds it was being trained in. However, the two most interesting aspects of the evaluation were: 1. The authors showed that, given the values of the prediction vector, you could predict the true value of a state quite well, suggesting that the vector captured most of the information about what states were high value. However, beyond that, they found that the meta-learned vector was able to be used to predict the value calculated with discount rates different that than one used in the meta-learned training, which the hand-engineered alternative, TD-lambda, wasn't able to do (it could only well-predict values at the same discount rate used to calculate it). This suggests that the network really is learning some more robust notion of value that isn't tied to a specific discount rate. 2. They also found that they were able to deploy the LSTM update rule learned on grid worlds to Atari games, and have it perform reasonably well - beating A2C in a few cases, though certainly not all. This is fairly impressive, since it's an example of a rule learned on a different, much simpler set of environments generalizing to more complex ones, and suggests that there's something intrinsic to Reinforcement Learning that it's capturing ![]() |