First published: 2016/06/08 (8 years ago) Abstract: Despite the success of CNNs, selecting the optimal architecture for a given
task remains an open problem. Instead of aiming to select a single optimal
architecture, we propose a "fabric" that embeds an exponentially large number
of architectures. The fabric consists of a 3D trellis that connects response
maps at different layers, scales, and channels with a sparse homogeneous local
connectivity pattern. The only hyper-parameters of a fabric are the number of
channels and layers. While individual architectures can be recovered as paths,
the fabric can in addition ensemble all embedded architectures together,
sharing their weights where their paths overlap. Parameters can be learned
using standard methods based on back-propagation, at a cost that scales
linearly in the fabric size. We present benchmark results competitive with the
state of the art for image classification on MNIST and CIFAR10, and for
semantic segmentation on the Part Labels dataset.