A Theoretical Framework for Robustness of (Deep) Classifiers against Adversarial Examples
Beilun Wang
and
Ji Gao
and
Yanjun Qi
arXiv e-Print archive - 2016 via Local arXiv
Keywords:
cs.LG, cs.CR, cs.CV
First published: 2016/12/01 (7 years ago) Abstract: Most machine learning classifiers, including deep neural networks, are
vulnerable to adversarial examples. Such inputs are typically generated by
adding small but purposeful modifications that lead to incorrect outputs while
imperceptible to human eyes. The goal of this paper is not to introduce a
single method, but to make theoretical steps towards fully understanding
adversarial examples. By using concepts from topology, our theoretical analysis
brings forth the key reasons why an adversarial example can fool a classifier
($f_1$) and adds its oracle ($f_2$, like human eyes) in such analysis. By
investigating the topological relationship between two (pseudo)metric spaces
corresponding to predictor $f_1$ and oracle $f_2$, we develop necessary and
sufficient conditions that can determine if $f_1$ is always robust
(strong-robust) against adversarial examples according to $f_2$. Interestingly
our theorems indicate that just one unnecessary feature can make $f_1$ not
strong-robust, and the right feature representation learning is the key to
getting a classifier that is both accurate and strong-robust.