Crossing Nets: Dual Generative Models with a Shared Latent Space for Hand Pose Estimation
Chengde Wan
and
Thomas Probst
and
Luc Van Gool
and
Angela Yao
arXiv e-Print archive - 2017 via Local arXiv
Keywords:
cs.CV
First published: 2017/02/11 (7 years ago) Abstract: State-of-the-art methods for 3D hand pose estimation from depth images
require large amounts of annotated training data. We propose to model the
statistical relationships of 3D hand poses and corresponding depth images using
two deep generative models with a shared latent space. By design, our
architecture allows for learning from unlabeled image data in a semi-supervised
manner. Assuming a one-to-one mapping between a pose and a depth map, any given
point in the shared latent space can be projected into both a hand pose and a
corresponding depth map. Regressing the hand pose can then be done by learning
a discriminator to estimate the posterior of the latent pose given some depth
map. To improve generalization and to better exploit unlabeled depth maps, we
jointly train a generator and a discriminator. At each iteration, the generator
is updated with the back-propagated gradient from the discriminator to
synthesize realistic depth maps of the articulated hand, while the
discriminator benefits from an augmented training set of synthesized and
unlabeled samples. The proposed discriminator network architecture is highly
efficient and runs at 90 FPS on the CPU with accuracies comparable or better
than state-of-art on 3 publicly available benchmarks.