Towards Diverse and Natural Image Descriptions via a Conditional GAN
Bo Dai
and
Sanja Fidler
and
Raquel Urtasun
and
Dahua Lin
arXiv e-Print archive - 2017 via Local arXiv
Keywords:
cs.CV
First published: 2017/03/17 (7 years ago) Abstract: Despite the substantial progress in recent years, the image captioning
techniques are still far from being perfect.Sentences produced by existing
methods, e.g. those based on RNNs, are often overly rigid and lacking in
variability. This issue is related to a learning principle widely used in
practice, that is, to maximize the likelihood of training samples. This
principle encourages high resemblance to the "ground-truth" captions while
suppressing other reasonable descriptions. Conventional evaluation metrics,
e.g. BLEU and METEOR, also favor such restrictive methods. In this paper, we
explore an alternative approach, with the aim to improve the naturalness and
diversity -- two essential properties of human expression. Specifically, we
propose a new framework based on Conditional Generative Adversarial Networks
(CGAN), which jointly learns a generator to produce descriptions conditioned on
images and an evaluator to assess how well a description fits the visual
content. It is noteworthy that training a sequence generator is nontrivial. We
overcome the difficulty by Policy Gradient, a strategy stemming from
Reinforcement Learning, which allows the generator to receive early feedback
along the way. We tested our method on two large datasets, where it performed
competitively against real people in our user study and outperformed other
methods on various tasks.