First published: 2017/04/23 (7 years ago) Abstract: Several approaches have recently been proposed for learning decentralized
deep multiagent policies that coordinate via a differentiable communication
channel. While these policies are effective for many tasks, interpretation of
their induced communication strategies has remained a challenge. Here we
propose to interpret agents' messages by translating them. Unlike in typical
machine translation problems, we have no parallel data to learn from. Instead
we develop a translation model based on the insight that agent messages and
natural language strings mean the same thing if they induce the same belief
about the world in a listener. We present theoretical guarantees and empirical
evidence that our approach preserves both the semantics and pragmatics of
messages by ensuring that players communicating through a translation layer do
not suffer a substantial loss in reward relative to players with a common
language.