Data Augmentation for Skin Lesion Analysis
Fábio Perez
and
Cristina Vasconcelos
and
Sandra Avila
and
Eduardo Valle
arXiv e-Print archive - 2018 via Local arXiv
Keywords:
cs.CV
First published: 2018/09/05 (6 years ago) Abstract: Deep learning models show remarkable results in automated skin lesion
analysis. However, these models demand considerable amounts of data, while the
availability of annotated skin lesion images is often limited. Data
augmentation can expand the training dataset by transforming input images. In
this work, we investigate the impact of 13 data augmentation scenarios for
melanoma classification trained on three CNNs (Inception-v4, ResNet, and
DenseNet). Scenarios include traditional color and geometric transforms, and
more unusual augmentations such as elastic transforms, random erasing and a
novel augmentation that mixes different lesions. We also explore the use of
data augmentation at test-time and the impact of data augmentation on various
dataset sizes. Our results confirm the importance of data augmentation in both
training and testing and show that it can lead to more performance gains than
obtaining new images. The best scenario results in an AUC of 0.882 for melanoma
classification without using external data, outperforming the top-ranked
submission (0.874) for the ISIC Challenge 2017, which was trained with
additional data.