First published: 2018/12/24 (5 years ago) Abstract: Generative adversarial nets (GANs) are widely used to learn the data sampling
process and their performance may heavily depend on the loss functions, given a
limited computational budget. This study revisits MMD-GAN that uses the maximum
mean discrepancy (MMD) as the loss function for GAN and makes two
contributions. First, we argue that the existing MMD loss function may
discourage the learning of fine details in data as it attempts to contract the
discriminator outputs of real data. To address this issue, we propose a
repulsive loss function to actively learn the difference among the real data by
simply rearranging the terms in MMD. Second, inspired by the hinge loss, we
propose a bounded Gaussian kernel to stabilize the training of MMD-GAN with the
repulsive loss function. The proposed methods are applied to the unsupervised
image generation tasks on CIFAR-10, STL-10, CelebA, and LSUN bedroom datasets.
Results show that the repulsive loss function significantly improves over the
MMD loss at no additional computational cost and outperforms other
representative loss functions. The proposed methods achieve an FID score of
16.21 on the CIFAR-10 dataset using a single DCGAN network and spectral
normalization.