Building Machines That Learn and Think Like People
Lake, Brenden M.
and
Ullman, Tomer D.
and
Tenenbaum, Joshua B.
and
Gershman, Samuel J.
arXiv e-Print archive - 2016 via Local Bibsonomy
Keywords:
dblp
This paper performs a comparitive study of recent advances in deep learning with human-like learning from a cognitive science point of view. Since natural intelligence is still the best form of intelligence, the authors list a core set of ingredients required to build machines that reason like humans.
- Cognitive capabilities present from childhood in humans.
- Intuitive physics; for example, a sense of plausibility of object trajectories, affordances.
- Intuitive psychology; for example, goals and beliefs.
- Learning as rapid model-building (and not just pattern recognition).
- Based on compositionality and learning-to-learn.
- Humans learn by inferring a general schema to describe goals, object types and interactions. This enables learning from few examples.
- Humans also learn richer conceptual models.
- Indicator: variety of functions supported by these models: classification, prediction, explanation, communication, action, imagination and composition.
- Models should hence have strong inductive biases and domain knowledge built into them; structural sharing of concepts by compositional reuse of primitives.
- Use of both model-free and model-based learning.
- Model-free, fast selection of actions in simple associative learning and discriminative tasks.
- Model-based learning when a causal model has been built to plan future actions or maximize rewards.
- Selective attention, augmented working memory, and experience replay are low-level promising trends in deep learning inspired from cognitive psychology.
- Need for higher-level aforementioned ingredients.
TLDR; The author explore the gap between Deep Learning methods and human learning. The argue that natural intelligence is still the best example of intelligence, so it's worth exploring. To demonstrate their points they explore two challenges: 1. Recognizing new characters and objects 2. Learning to play the game Frostbite. The authors make several arguments:
- Humans have an intuitive understanding of physics and psychology (understanding goals and agents) very early on. These two types of "software" help them to learn new tasks quickly.
- Humans build causal models of the world instead of just performing pattern recognition. These models allow humans to learn from far fewer examples than current Deep Learning methods. For example, AlphaGo played a billion games or so, Lee Sedol perhaps 50,000. Incorporating compositionality, learning-to-learn (transfer learning) and causality helps humans to build these models.
- Humans use both model-free and model-based learning algorithms.