Training Deep Neural Networks on Noisy Labels with Bootstrapping
Reed, Scott E.
and
Lee, Honglak
and
Anguelov, Dragomir
and
Szegedy, Christian
and
Erhan, Dumitru
and
Rabinovich, Andrew
arXiv e-Print archive - 2014 via Local Bibsonomy
Keywords:
dblp
_Objective:_ Design a loss to make deep network robust to label noise.
_Dataset:_ [MNIST](yann.lecun.com/exdb/mnist/), Toroto Faces Database, [ILSVRC2014](http://www.image-net.org/challenges/LSVRC/2014/).
#### Inner-workings:
Three types of losses are presented:
* reconstruciton loss:
[![screen shot 2017-06-26 at 11 00 07 am](https://user-images.githubusercontent.com/17261080/27532200-bb42b8a6-5a5f-11e7-8c14-673958216bfc.png)](https://user-images.githubusercontent.com/17261080/27532200-bb42b8a6-5a5f-11e7-8c14-673958216bfc.png)
* soft bootstrapping which uses the predicted labels by the network `qk` and the user-provided labels `tk`:
[![screen shot 2017-06-26 at 11 10 43 am](https://user-images.githubusercontent.com/17261080/27532296-1e01a420-5a60-11e7-9273-d1affb0d7c2e.png)](https://user-images.githubusercontent.com/17261080/27532296-1e01a420-5a60-11e7-9273-d1affb0d7c2e.png)
* hard bootstrapping replaces the soft predicted labels by their binary version:
[![screen shot 2017-06-26 at 11 12 58 am](https://user-images.githubusercontent.com/17261080/27532439-a3f9dbd8-5a60-11e7-91a7-327efc748eae.png)](https://user-images.githubusercontent.com/17261080/27532439-a3f9dbd8-5a60-11e7-91a7-327efc748eae.png)
[![screen shot 2017-06-26 at 11 13 05 am](https://user-images.githubusercontent.com/17261080/27532463-b52f4ab4-5a60-11e7-9aed-615109b61bd8.png)](https://user-images.githubusercontent.com/17261080/27532463-b52f4ab4-5a60-11e7-9aed-615109b61bd8.png)
#### Architecture:
They test with Feed Forward Neural Networks only.
#### Results:
They use only permutation noise with a very high probability compared with what we might encounter in real-life.
[![screen shot 2017-06-26 at 11 29 05 am](https://user-images.githubusercontent.com/17261080/27533105-b051d366-5a62-11e7-95f3-168d0d2d7841.png)](https://user-images.githubusercontent.com/17261080/27533105-b051d366-5a62-11e7-95f3-168d0d2d7841.png)
The improvement for small noise probability (<10%) might not be that interesting.