DRAW: A Recurrent Neural Network For Image Generation
Gregor, Karol
and
Danihelka, Ivo
and
Graves, Alex
and
Rezende, Danilo Jimenez
and
Wierstra, Daan
International Conference on Machine Learning - 2015 via Local Bibsonomy
Keywords:
dblp
The paper introduces a sequential variational auto-encoder that generates complex images iteratively. The authors also introduce a new spatial attention mechanism that allows the model to focus on small subsets of the image. This new approach for image generation produces images that can’t be distinguished from the training data.
#### What is DRAW:
The deep recurrent attention writer (DRAW) model has two differences with respect to other variational auto-encoders. First, the encoder and the decoder are recurrent networks. Second, it includes an attention mechanism that restricts the input region observed by the encoder and the output region observed by the decoder.
#### What do we gain?
The resulting images are greatly improved by allowing a conditional and sequential generation. In addition, the spatial attention mechanism can be used in other contexts to solve the “Where to look?” problem.
#### What follows?
A possible extension to this model would be to use a convolutional architecture in the encoder or the decoder. Although this might be less useful since we are already restricting the input of the network.
#### Like:
* As observed in the samples generated by the model, the attention mechanism works effectively by reconstructing images in a local way.
* The attention model is fully differentiable.
#### Dislike:
* I think a better exposition of the attention mechanism would improve this paper.