[link]
This paper deals with the question what / how exactly CNNs learn, considering the fact that they usually have more trainable parameters than data points on which they are trained. When the authors write "deep neural networks", they are talking about Inception V3, AlexNet and MLPs. ## Key contributions * Deep neural networks easily fit random labels (achieving a training error of 0 and a test error which is just randomly guessing labels as expected). $\Rightarrow$Those architectures can simply bruteforce memorize the training data. * Deep neural networks fit random images (e.g. Gaussian noise) with 0 training error. The authors conclude that VCdimension / Rademacher complexity, and uniform stability are bad explanations for generalization capabilities of neural networks * The authors give a construction for a 2layer network with $p = 2n+d$ parameters  where $n$ is the number of samples and $d$ is the dimension of each sample  which can easily fit any labeling. (Finite sample expressivity). See section 4. ## What I learned * Any measure $m$ of the generalization capability of classifiers $H$ should take the percentage of corrupted labels ($p_c \in [0, 1]$, where $p_c =0$ is a perfect labeling and $p_c=1$ is totally random) into account: If $p_c = 1$, then $m()$ should be 0, too, as it is impossible to learn something meaningful with totally random labels. * We seem to have built models which work well on image data in general, but not "natural" / meaningful images as we thought. ## Funny > deep neural nets remain mysterious for many reasons > Note that this is not exactly simple as the kernel matrix requires 30GB to store in memory. Nonetheless, this system can be solved in under 3 minutes in on a commodity workstation with 24 cores and 256 GB of RAM with a conventional LAPACK call. ## See also * [Deep Nets Don't Learn Via Memorization](https://openreview.net/pdf?id=rJv6ZgHYg)
Your comment:
