First published: 2017/11/14 (6 years ago) Abstract: L$_2$ regularization and weight decay regularization are equivalent for
standard stochastic gradient descent (when rescaled by the learning rate), but
as we demonstrate this is \emph{not} the case for adaptive gradient algorithms,
such as Adam. While common implementations of these algorithms employ L$_2$
regularization (often calling it "weight decay" in what may be misleading due
to the inequivalence we expose), we propose a simple modification to recover
the original formulation of weight decay regularization by \emph{decoupling}
the weight decay from the optimization steps taken w.r.t. the loss function. We
provide empirical evidence that our proposed modification (i) decouples the
optimal choice of weight decay factor from the setting of the learning rate for
both standard SGD and Adam and (ii) substantially improves Adam's
generalization performance, allowing it to compete with SGD with momentum on
image classification datasets (on which it was previously typically
outperformed by the latter). Our proposed decoupled weight decay has already
been adopted by many researchers, and the community has implemented it in
TensorFlow and PyTorch; the complete source code for our experiments is
available at https://github.com/loshchil/AdamW-and-SGDW