Welcome to ShortScience.org! |

- ShortScience.org is a platform for post-publication discussion aiming to improve accessibility and reproducibility of research ideas.
- The website has 1567 public summaries, mostly in machine learning, written by the community and organized by paper, conference, and year.
- Reading summaries of papers is useful to obtain the perspective and insight of another reader, why they liked or disliked it, and their attempt to demystify complicated sections.
- Also, writing summaries is a good exercise to understand the content of a paper because you are forced to challenge your assumptions when explaining it.
- Finally, you can keep up to date with the flood of research by reading the latest summaries on our Twitter and Facebook pages.

RandomOut: Using a convolutional gradient norm to win The Filter Lottery

Cohen, Joseph Paul and Lo, Henry Z. and Ding, Wei

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

Cohen, Joseph Paul and Lo, Henry Z. and Ding, Wei

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

[link]
Basically they observe a pattern they call The Filter Lottery (TFL) where the random seed causes a high variance in the training accuracy: ![](http://i.imgur.com/5rWig0H.png) They use the convolutional gradient norm ($CGN$) \cite{conf/fgr/LoC015} to determine how much impact a filter has on the overall classification loss function by taking the derivative of the loss function with respect each weight in the filter. $$CGN(k) = \sum_{i} \left|\frac{\partial L}{\partial w^k_i}\right|$$ They use the CGN to evaluate the impact of a filter on error, and re-initialize filters when the gradient norm of its weights falls below a specific threshold. |

Learning Representations for Counterfactual Inference

Johansson, Fredrik D. and Shalit, Uri and Sontag, David

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

Johansson, Fredrik D. and Shalit, Uri and Sontag, David

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

[link]
This paper presents a method to train a neural network to make predictions for *counterfactual* questions. In short, such questions are questions about what the result of an intervention would have been, had a different choice for the intervention been made (e.g. *Would this patient have lower blood sugar had she received a different medication?*). One approach to tackle this problem is to collect data of the form $(x_i, t_i, y_i^F)$ where $x_i$ describes a situation (e.g. a patient), $t_i$ describes the intervention made (in this paper $t_i$ is binary, e.g. $t_i = 1$ if a new treatment is used while $t_i = 0$ would correspond to using the current treatment) and $y_i^F$ is the factual outcome of the intervention $t_i$ for $x_i$. From this training data, a predictor $h(x,t)$ taking the pair $(x_i, t_i)$ as input and outputting a prediction for $y_i^F$ could be trained. From this predictor, one could imagine answering counterfactual questions by feeding $(x_i, 1-t_i)$ (i.e. a description of the same situation $x_i$ but with the opposite intervention $1-t_i$) to our predictor and comparing the prediction $h(x_i, 1-t_i)$ with $y_i^F$. This would give us an estimate of the change in the outcome, had a different intervention been made, thus providing an answer to our counterfactual question. The authors point out that this scenario is related to that of domain adaptation (more specifically to the special case of covariate shift) in which the input training distribution (here represented by inputs $(x_i,t_i)$) is different from the distribution of inputs that will be fed at test time to our predictor (corresponding to the inputs $(x_i, 1-t_i)$). If the choice of intervention $t_i$ is evenly spread and chosen independently from $x_i$, the distributions become the same. However, in observational studies, the choice of $t_i$ for some given $x_i$ is often not independent of $x_i$ and made according to some unknown policy. This is the situation of interest in this paper. Thus, the authors propose an approach inspired by the domain adaptation literature. Specifically, they propose to have the predictor $h(x,t)$ learn a representation of $x$ that is indiscriminate of the intervention $t$ (see Figure 2 for the proposed neural network architecture). Indeed, this is a notion that is [well established][1] in the domain adaptation literature and has been exploited previously using regularization terms based on [adversarial learning][2] and [maximum mean discrepancy][3]. In this paper, the authors used instead a regularization (noted in the paper as $disc(\Phi_{t=0},\Phi_ {t=1})$) based on the so-called discrepancy distance of [Mansour et al.][4], adapting its use to the case of a neural network. As an example, imagine that in our dataset, a new treatment ($t=1$) was much more frequently used than not ($t=0$) for men. Thus, for men, relatively insufficient evidence for counterfactual inference is expected to be found in our training dataset. Intuitively, we would thus want our predictor to not rely as much on that "feature" of patients when inferring the impact of the treatment. In addition to this term, the authors also propose incorporating an additional regularizer where the prediction $h(x_i,1-t_i)$ on counterfactual inputs is pushed to be as close as possible to the target $y_{j}^F$ of the observation $x_j$ that is closest to $x_i$ **and** actually had the counterfactual intervention $t_j = 1-t_i$. The paper first shows a bound relating the counterfactual generalization error to the discrepancy distance. Moreover, experiments simulating counterfactual inference tasks are presented, in which performance is measured by comparing the predicted treatment effects (as estimated by the difference between the observed effect $y_i^F$ for the observed treatment and the predicted effect $h(x_i, 1-t_i)$ for the opposite treatment) with the real effect (known here because the data is simulated). The paper shows that the proposed approach using neural networks outperforms several baselines on this task. **My two cents** The connection with domain adaptation presented here is really clever and enlightening. This sounds like a very compelling approach to counterfactual inference, which can exploit a lot of previous work on domain adaptation. The paper mentions that selecting the hyper-parameters (such as the regularization terms weights) in this scenario is not a trivial task. Indeed, measuring performance here requires knowing the true difference in intervention outcomes, which in practice usually cannot be known (e.g. two treatments usually cannot be given to the same patient once). In the paper, they somewhat "cheat" by using the ground truth difference in outcomes to measure out-of-sample performance, which the authors admit is unrealistic. Thus, an interesting avenue for future work would be to design practical hyper-parameter selection procedures for this scenario. I wonder whether the *reverse cross-validation* approach we used in our work on our adversarial approach to domain adaptation (see [Section 5.1.2][5]) could successfully be used here. Finally, I command the authors for presenting such a nicely written description of counterfactual inference problem setup in general, I really enjoyed it! [1]: https://papers.nips.cc/paper/2983-analysis-of-representations-for-domain-adaptation.pdf [2]: http://arxiv.org/abs/1505.07818 [3]: http://ijcai.org/Proceedings/09/Papers/200.pdf [4]: http://www.cs.nyu.edu/~mohri/pub/nadap.pdf [5]: http://arxiv.org/pdf/1505.07818v4.pdf#page=16 |

Mask R-CNN

He, Kaiming and Gkioxari, Georgia and Dollár, Piotr and Girshick, Ross B.

arXiv e-Print archive - 2017 via Local Bibsonomy

Keywords: dblp

He, Kaiming and Gkioxari, Georgia and Dollár, Piotr and Girshick, Ross B.

arXiv e-Print archive - 2017 via Local Bibsonomy

Keywords: dblp

[link]
Mask RCNN takes off from where Faster RCNN left, with some augmentations aimed at bettering instance segmentation (which was out of scope for FRCNN). Instance segmentation was achieved remarkably well in *DeepMask* , *SharpMask* and later *Feature Pyramid Networks* (FPN). Faster RCNN was not designed for pixel-to-pixel alignment between network inputs and outputs. This is most evident in how RoIPool , the de facto core operation for attending to instances, performs coarse spatial quantization for feature extraction. Mask RCNN fixes that by introducing RoIAlign in place of RoIPool. #### Methodology Mask RCNN retains most of the architecture of Faster RCNN. It adds the a third branch for segmentation. The third branch takes the output from RoIAlign layer and predicts binary class masks for each class. ##### Major Changes and intutions **Mask prediction** Mask prediction segmentation predicts a binary mask for each RoI using fully convolution - and the stark difference being usage of *sigmoid* activation for predicting final mask instead of *softmax*, implies masks don't compete with each other. This *decouples* segmentation from classification. The class prediction branch is used for class prediction and for calculating loss, the mask of predicted loss is used calculating Lmask. Also, they show that a single class agnostic mask prediction works almost as effective as separate mask for each class, thereby supporting their method of decoupling classification from segmentation **RoIAlign** RoIPool first quantizes a floating-number RoI to the discrete granularity of the feature map, this quantized RoI is then subdivided into spatial bins which are themselves quantized, and finally feature values covered by each bin are aggregated (usually by max pooling). Instead of quantization of the RoI boundaries or bin bilinear interpolation is used to compute the exact values of the input features at four regularly sampled locations in each RoI bin, and aggregate the result (using max or average). **Backbone architecture** Faster RCNN uses a VGG like structure for extracting features from image, weights of which were shared among RPN and region detection layers. Herein, authors experiment with 2 backbone architectures - ResNet based VGG like in FRCNN and ResNet based [FPN](http://www.shortscience.org/paper?bibtexKey=journals/corr/LinDGHHB16) based. FPN uses convolution feature maps from previous layers and recombining them to produce pyramid of feature maps to be used for prediction instead of single-scale feature layer (final output of conv layer before connecting to fc layers was used in Faster RCNN) **Training Objective** The training objective looks like this ![](https://i.imgur.com/snUq73Q.png) Lmask is the addition from Faster RCNN. The method to calculate was mentioned above #### Observation Mask RCNN performs significantly better than COCO instance segmentation winners *without any bells and whiskers*. Detailed results are available in the paper |

Algorithms for Non-negative Matrix Factorization

Lee, Daniel D. and Seung, H. Sebastian

Neural Information Processing Systems Conference - 2000 via Local Bibsonomy

Keywords: dblp

Lee, Daniel D. and Seung, H. Sebastian

Neural Information Processing Systems Conference - 2000 via Local Bibsonomy

Keywords: dblp

[link]
We want to find two matrices $W$ and $H$ such that $V = WH$. Often a goal is to determine underlying patterns in the relationships between the concepts represented by each row and column. $W$ is some $m$ by $n$ matrix and we want the inner dimension of the factorization to be $r$. So $$\underbrace{V}_{m \times n} = \underbrace{W}_{m \times r} \underbrace{H}_{r \times n}$$ Let's consider an example matrix where of three customers (as rows) are associated with three movies (the columns) by a rating value. $$ V = \left[\begin{array}{c c c} 5 & 4 & 1 \\\\ 4 & 5 & 1 \\\\ 2 & 1 & 5 \end{array}\right] $$ We can decompose this into two matrices with $r = 1$. First lets do this without any non-negative constraint using an SVD reshaping matrices based on removing eigenvalues: $$ W = \left[\begin{array}{c c c} -0.656 \\\ -0.652 \\\ -0.379 \end{array}\right], H = \left[\begin{array}{c c c} -6.48 & -6.26 & -3.20\\\\ \end{array}\right] $$ We can also decompose this into two matrices with $r = 1$ subject to the constraint that $w_{ij} \ge 0$ and $h_{ij} \ge 0$. (Note: this is only possible when $v_{ij} \ge 0$): $$ W = \left[\begin{array}{c c c} 0.388 \\\\ 0.386 \\\\ 0.224 \end{array}\right], H = \left[\begin{array}{c c c} 11.22 & 10.57 & 5.41 \\\\ \end{array}\right] $$ Both of these $r=1$ factorizations reconstruct matrix $V$ with the same error. $$ V \approx WH = \left[\begin{array}{c c c} 4.36 & 4.11 & 2.10 \\\ 4.33 & 4.08 & 2.09 \\\ 2.52 & 2.37 & 1.21 \\\ \end{array}\right] $$ If they both yield the same reconstruction error then why is a non-negativity constraint useful? We can see above that it is easy to observe patterns in both factorizations such as similar customers and similar movies. `TODO: motivate why NMF is better` #### Paper Contribution This paper discusses two approaches for iteratively creating a non-negative $W$ and $H$ based on random initial matrices. The paper discusses a multiplicative update rule where the elements of $W$ and $H$ are iteratively transformed by scaling each value such that error is not increased. The multiplicative approach is discussed in contrast to an additive gradient decent based approach where small corrections are iteratively applied. The multiplicative approach can be reduced to this by setting the learning rate ($\eta$) to a ratio that represents the magnitude of the element in $H$ to the scaling factor of $W$ on $H$. ### Still a draft |

Deep Residual Learning for Image Recognition

He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian

arXiv e-Print archive - 2015 via Local Bibsonomy

Keywords: dblp

He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian

arXiv e-Print archive - 2015 via Local Bibsonomy

Keywords: dblp

[link]
Deeper networks should never have a higher **training** error than smaller ones. In the worst case, the layers should "simply" learn identities. It seems as this is not so easy with conventional networks, as they get much worse with more layers. So the idea is to add identity functions which skip some layers. The network only has to learn the **residuals**. Advantages: * Learning the identity becomes learning 0 which is simpler * Loss in information flow in the forward pass is not a problem anymore * No vanishing / exploding gradient * Identities don't have parameters to be learned ## Evaluation The learning rate starts at 0.1 and is divided by 10 when the error plateaus. Weight decay of 0.0001 ($10^{-4}$), momentum of 0.9. They use mini-batches of size 128. * ImageNet ILSVRC 2015: 3.57% (ensemble) * CIFAR-10: 6.43% * MS COCO: 59.0% mAp@0.5 (ensemble) * PASCAL VOC 2007: 85.6% mAp@0.5 * PASCAL VOC 2012: 83.8% mAp@0.5 ## See also * [DenseNets](http://www.shortscience.org/paper?bibtexKey=journals/corr/1608.06993) |

About