Welcome to ShortScience.org! |

- ShortScience.org is a platform for post-publication discussion aiming to improve accessibility and reproducibility of research ideas.
- The website has 1584 public summaries, mostly in machine learning, written by the community and organized by paper, conference, and year.
- Reading summaries of papers is useful to obtain the perspective and insight of another reader, why they liked or disliked it, and their attempt to demystify complicated sections.
- Also, writing summaries is a good exercise to understand the content of a paper because you are forced to challenge your assumptions when explaining it.
- Finally, you can keep up to date with the flood of research by reading the latest summaries on our Twitter and Facebook pages.

Teaching Machines to Read and Comprehend

Hermann, Karl Moritz and Kociský, Tomás and Grefenstette, Edward and Espeholt, Lasse and Kay, Will and Suleyman, Mustafa and Blunsom, Phil

Neural Information Processing Systems Conference - 2015 via Local Bibsonomy

Keywords: dblp

Hermann, Karl Moritz and Kociský, Tomás and Grefenstette, Edward and Espeholt, Lasse and Kay, Will and Suleyman, Mustafa and Blunsom, Phil

Neural Information Processing Systems Conference - 2015 via Local Bibsonomy

Keywords: dblp

[link]
This paper deals with the formal question of machine reading. It proposes a novel methodology for automatic dataset building for machine reading model evaluation. To do so, the authors leverage on news resources that are equipped with a summary to generate a large number of questions about articles by replacing the named entities of it. Furthermore a attention enhanced LSTM inspired reading model is proposed and evaluated. The paper is well-written and clear, the originality seems to lie on two aspects. First, an original methodology of question answering dataset creation, where context-query-answer triples are automatically extracted from news feeds. Such proposition can be considered as important because it opens the way for large model learning and evaluation. The second contribution is the addition of an attention mechanism to an LSTM reading model. the empirical results seem to show relevant improvement with respect to an up-to-date list of machine reading models. Given the lack of an appropriate dataset, the author provides a new dataset which scraped CNN and Daily Mail, using both the full text and abstract summaries/bullet points. The dataset was then anonymised (i.e. entity names removed). Next the author presents a two novel Deep long-short term memory models which perform well on the Cloze query task. |

Algorithms for Non-negative Matrix Factorization

Lee, Daniel D. and Seung, H. Sebastian

Neural Information Processing Systems Conference - 2000 via Local Bibsonomy

Keywords: dblp

Lee, Daniel D. and Seung, H. Sebastian

Neural Information Processing Systems Conference - 2000 via Local Bibsonomy

Keywords: dblp

[link]
We want to find two matrices $W$ and $H$ such that $V = WH$. Often a goal is to determine underlying patterns in the relationships between the concepts represented by each row and column. $W$ is some $m$ by $n$ matrix and we want the inner dimension of the factorization to be $r$. So $$\underbrace{V}_{m \times n} = \underbrace{W}_{m \times r} \underbrace{H}_{r \times n}$$ Let's consider an example matrix where of three customers (as rows) are associated with three movies (the columns) by a rating value. $$ V = \left[\begin{array}{c c c} 5 & 4 & 1 \\\\ 4 & 5 & 1 \\\\ 2 & 1 & 5 \end{array}\right] $$ We can decompose this into two matrices with $r = 1$. First lets do this without any non-negative constraint using an SVD reshaping matrices based on removing eigenvalues: $$ W = \left[\begin{array}{c c c} -0.656 \\\ -0.652 \\\ -0.379 \end{array}\right], H = \left[\begin{array}{c c c} -6.48 & -6.26 & -3.20\\\\ \end{array}\right] $$ We can also decompose this into two matrices with $r = 1$ subject to the constraint that $w_{ij} \ge 0$ and $h_{ij} \ge 0$. (Note: this is only possible when $v_{ij} \ge 0$): $$ W = \left[\begin{array}{c c c} 0.388 \\\\ 0.386 \\\\ 0.224 \end{array}\right], H = \left[\begin{array}{c c c} 11.22 & 10.57 & 5.41 \\\\ \end{array}\right] $$ Both of these $r=1$ factorizations reconstruct matrix $V$ with the same error. $$ V \approx WH = \left[\begin{array}{c c c} 4.36 & 4.11 & 2.10 \\\ 4.33 & 4.08 & 2.09 \\\ 2.52 & 2.37 & 1.21 \\\ \end{array}\right] $$ If they both yield the same reconstruction error then why is a non-negativity constraint useful? We can see above that it is easy to observe patterns in both factorizations such as similar customers and similar movies. `TODO: motivate why NMF is better` #### Paper Contribution This paper discusses two approaches for iteratively creating a non-negative $W$ and $H$ based on random initial matrices. The paper discusses a multiplicative update rule where the elements of $W$ and $H$ are iteratively transformed by scaling each value such that error is not increased. The multiplicative approach is discussed in contrast to an additive gradient decent based approach where small corrections are iteratively applied. The multiplicative approach can be reduced to this by setting the learning rate ($\eta$) to a ratio that represents the magnitude of the element in $H$ to the scaling factor of $W$ on $H$. ### Still a draft |

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Taigman, Yaniv and Yang, Ming and Ranzato, Marc'Aurelio and Wolf, Lior

Conference and Computer Vision and Pattern Recognition - 2014 via Local Bibsonomy

Keywords: dblp

Taigman, Yaniv and Yang, Ming and Ranzato, Marc'Aurelio and Wolf, Lior

Conference and Computer Vision and Pattern Recognition - 2014 via Local Bibsonomy

Keywords: dblp

[link]
## General stuff about face recognition Face recognition has 4 main tasks: * **Face detection**: Given an image, draw a rectangle around every face * **Face alignment**: Transform a face to be in a canonical pose * **Face representation**: Find a representation of a face which is suitable for follow-up tasks (small size, computationally cheap to compare, invariant to irrelevant changes) * **Face verification**: Images of two faces are given. Decide if it is the same person or not. The face verification task is sometimes (more simply) a face classification task (given a face, decide which of a fixed set of people it is). Datasets being used are: * **LFW** (Labeled Faces in the Wild): 97.35% accuracy; 13 323 web photos of 5 749 celebrities * **YTF** (YouTube Faces): 3425 YouTube videos of 1 595 subjects * **SFC** (Social Face Classification): 4.4 million labeled faces from 4030 people, each 800 to 1200 faces * **USF** (Human-ID database): 3D scans of faces ## Ideas in this paper This paper deals with face alignment and face representation. **Face Alignment** They made an average face with the USF dataset. Then, for each new face, they apply the following procedure: * Find 6 points in a face (2 eyes, 1 nose tip, 2 corners of the lip, 1 middle point of the bottom lip) * Crop according to those * Find 67 points in the face / apply them to a normalized 3D model of a face * Transform (=align) face to a normalized position **Representation** Train a neural network on 152x152 images of faces to classify 4030 celebrities. Remove the softmax output layer and use the output of the second-last layer as the transformed representation. The network is: * C1 (convolution): 32 filters of size $11 \times 11 \times 3$ (RGB-channels) (returns $142\times 142$ "images") * M2 (max pooling): $3 \times 3$, stride of 2 (returns $71\times 71$ "images") * C3 (convolution): 16 filters of size $9 \times 9 \times 16$ (returns $63\times 63$ "images") * L4 (locally connected): $16\times9\times9\times16$ (returns $55\times 55$ "images") * L5 (locally connected): $16\times7\times7\times16$ (returns $25\times 25$ "images") * L6 (locally connected): $16\times5\times5\times16$ (returns $21\times 21$ "images") * F7 (fully connected): ReLU, 4096 units * F8 (fully connected): softmax layer with 4030 output neurons The training was done with: * Stochastic Gradient Descent (SGD) * Momentum of 0.9 * Performance scheduling (LR starting at 0.01, ending at 0.0001) * Weight initialization: $w \sim \mathcal{N}(\mu=0, \sigma=0.01)$, $b = 0.5$ * ~15 epochs ($\approx$ 3 days) of training ## Evaluation results * **Quality**: * 97.35% accuracy (or mean accuracy?) with an Ensemble of DNNs for LFW * 91.4% accuracy with a single network on YTF * **Speed**: DeepFace runs in 0.33 seconds per image (I'm not sure which size). This includes image decoding, face detection and alignment, **the** feed forward network (why only one? wasn't this the best performing Ensemble?) and final classification output ## See also * Andrew Ng: [C4W4L03 Siamese Network](https://www.youtube.com/watch?v=6jfw8MuKwpI) |

Deep Networks with Stochastic Depth

Huang, Gao and Sun, Yu and Liu, Zhuang and Sedra, Daniel and Weinberger, Kilian

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: deeplearning, acreuser

Huang, Gao and Sun, Yu and Liu, Zhuang and Sedra, Daniel and Weinberger, Kilian

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: deeplearning, acreuser

[link]
**Dropout for layers** sums it up pretty well. The authors built on the idea of [deep residual networks](http://arxiv.org/abs/1512.03385) to use identity functions to skip layers. The main advantages: * Training speed-ups by about 25% * Huge networks without overfitting ## Evaluation * [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html): 4.91% error ([SotA](https://martin-thoma.com/sota/#image-classification): 2.72 %) Training Time: ~15h * [CIFAR-100](https://www.cs.toronto.edu/~kriz/cifar.html): 24.58% ([SotA](https://martin-thoma.com/sota/#image-classification): 17.18 %) Training time: < 16h * [SVHN](http://ufldl.stanford.edu/housenumbers/): 1.75% ([SotA](https://martin-thoma.com/sota/#image-classification): 1.59 %) - trained for 50 epochs, begging with a LR of 0.1, divided by 10 after 30 epochs and 35. Training time: < 26h |

Explaining and Harnessing Adversarial Examples

Ian J. Goodfellow and Jonathon Shlens and Christian Szegedy

arXiv e-Print archive - 2014 via Local arXiv

Keywords: stat.ML, cs.LG

**First published:** 2014/12/20 (9 years ago)

**Abstract:** Several machine learning models, including neural networks, consistently
misclassify adversarial examples---inputs formed by applying small but
intentionally worst-case perturbations to examples from the dataset, such that
the perturbed input results in the model outputting an incorrect answer with
high confidence. Early attempts at explaining this phenomenon focused on
nonlinearity and overfitting. We argue instead that the primary cause of neural
networks' vulnerability to adversarial perturbation is their linear nature.
This explanation is supported by new quantitative results while giving the
first explanation of the most intriguing fact about them: their generalization
across architectures and training sets. Moreover, this view yields a simple and
fast method of generating adversarial examples. Using this approach to provide
examples for adversarial training, we reduce the test set error of a maxout
network on the MNIST dataset.
more
less

Ian J. Goodfellow and Jonathon Shlens and Christian Szegedy

arXiv e-Print archive - 2014 via Local arXiv

Keywords: stat.ML, cs.LG

[link]
#### Problem addressed: A fast way of finding adversarial examples, and a hypothesis for the adversarial examples #### Summary: This paper tries to explain why adversarial examples exists, the adversarial example is defined in another paper \cite{arxiv.org/abs/1312.6199}. The adversarial example is kind of counter intuitive because they normally are visually indistinguishable from the original example, but leads to very different predictions for the classifier. For example, let sample $x$ be associated with the true class $t$. A classifier (in particular a well trained dnn) can correctly predict $x$ with high confidence, but with a small perturbation $r$, the same network will predict $x+r$ to a different incorrect class also with high confidence. This paper explains that the exsistence of such adversarial examples is more because of low model capacity in high dimensional spaces rather than overfitting, and got some empirical support on that. It also shows a new method that can reliably generate adversarial examples really fast using `fast sign' method. Basically, one can generate an adversarial example by taking a small step toward the sign direction of the objective. They also showed that training along with adversarial examples helps the classifier to generalize. #### Novelty: A fast method to generate adversarial examples reliably, and a linear hypothesis for those examples. #### Datasets: MNIST #### Resources: Talk of the paper https://www.youtube.com/watch?v=Pq4A2mPCB0Y #### Presenter: Yingbo Zhou |

About