Welcome to ShortScience.org! |

- ShortScience.org is a platform for post-publication discussion aiming to improve accessibility and reproducibility of research ideas.
- The website has 1567 public summaries, mostly in machine learning, written by the community and organized by paper, conference, and year.
- Reading summaries of papers is useful to obtain the perspective and insight of another reader, why they liked or disliked it, and their attempt to demystify complicated sections.
- Also, writing summaries is a good exercise to understand the content of a paper because you are forced to challenge your assumptions when explaining it.
- Finally, you can keep up to date with the flood of research by reading the latest summaries on our Twitter and Facebook pages.

Adversarial Logit Pairing

Kannan, Harini and Kurakin, Alexey and Goodfellow, Ian J.

arXiv e-Print archive - 2018 via Local Bibsonomy

Keywords: dblp

Kannan, Harini and Kurakin, Alexey and Goodfellow, Ian J.

arXiv e-Print archive - 2018 via Local Bibsonomy

Keywords: dblp

[link]
Kannan et al. propose a defense against adversarial examples called adversarial logit pairing where the logits of clean and adversarial example are regularized to be similar. In particular, during adversarial training, they add a regularizer of the form $\lambda L(f(x), f(x’))$ were $L$ is, for example, the $L_2$ norm and $f(x’)$ the logits corresponding to adversarial example $x’$ (corresponding to clean example $x$). Intuitively, this is a very simple approach – adversarial training itself enforces the classification results of clean and corresponding adversarial examples to be the same and adversarial logit pairing enforces the internal representation, i.e., the logits, to be similar. In theory, this could also be applied to any set of activations within the network. In the paper, they conclude that “We hypothesize that adversarial logit pairing works well because it provides an additional prior that regularizes the model toward a more accurate understanding of the classes.” In experiments, they show that this approach slightly outperforms adversarial training alone on SVHN, MNIST as well as ImageNet. Also find this summary at [davidstutz.de](https://davidstutz.de/category/reading/). |

Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

Li, Chuan and Wand, Michael

Conference and Computer Vision and Pattern Recognition - 2016 via Local Bibsonomy

Keywords: dblp

Li, Chuan and Wand, Michael

Conference and Computer Vision and Pattern Recognition - 2016 via Local Bibsonomy

Keywords: dblp

[link]
* They describe a method that applies the style of a source image to a target image. * Example: Let a normal photo look like a van Gogh painting. * Example: Let a normal car look more like a specific luxury car. * Their method builds upon the well known artistic style paper and uses a new MRF prior. * The prior leads to locally more plausible patterns (e.g. less artifacts). ### How * They reuse the content loss from the artistic style paper. * The content loss was calculated by feed the source and target image through a network (here: VGG19) and then estimating the squared error of the euclidean distance between one or more hidden layer activations. * They use layer `relu4_2` for the distance measurement. * They replace the original style loss with a MRF based style loss. * Step 1: Extract from the source image `k x k` sized overlapping patches. * Step 2: Perform step (1) analogously for the target image. * Step 3: Feed the source image patches through a pretrained network (here: VGG19) and select the representations `r_s` from specific hidden layers (here: `relu3_1`, `relu4_1`). * Step 4: Perform step (3) analogously for the target image. (Result: `r_t`) * Step 5: For each patch of `r_s` find the best matching patch in `r_t` (based on normalized cross correlation). * Step 6: Calculate the sum of squared errors (based on euclidean distances) of each patch in `r_s` and its best match (according to step 5). * They add a regularizer loss. * The loss encourages smooth transitions in the synthesized image (i.e. few edges, corners). * It is based on the raw pixel values of the last synthesized image. * For each pixel in the synthesized image, they calculate the squared x-gradient and the squared y-gradient and then add both. * They use the sum of all those values as their loss (i.e. `regularizer loss = <sum over all pixels> x-gradient^2 + y-gradient^2`). * Their whole optimization problem is then roughly `image = argmin_image MRF-style-loss + alpha1 * content-loss + alpha2 * regularizer-loss`. * In practice, they start their synthesis with a low resolution image and then progressively increase the resolution (each time performing some iterations of optimization). * In practice, they sample patches from the style image under several different rotations and scalings. ### Results * In comparison to the original artistic style paper: * Less artifacts. * Their method tends to preserve style better, but content worse. * Can handle photorealistic style transfer better, so long as the images are similar enough. If no good matches between patches can be found, their method performs worse. ![Non-photorealistic example images](https://raw.githubusercontent.com/aleju/papers/master/neural-nets/images/Combining_MRFs_and_CNNs_for_Image_Synthesis__examples.png?raw=true "Non-photorealistic example images") *Non-photorealistic example images. Their method vs. the one from the original artistic style paper.* ![Photorealistic example images](https://raw.githubusercontent.com/aleju/papers/master/neural-nets/images/Combining_MRFs_and_CNNs_for_Image_Synthesis__examples_real.png?raw=true "Photorealistic example images") *Photorealistic example images. Their method vs. the one from the original artistic style paper.* |

3D Human Pose Estimation in Video With Temporal Convolutions and Semi-Supervised Training

Pavllo, Dario and Feichtenhofer, Christoph and Grangier, David and Auli, Michael

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2019 via Local Bibsonomy

Keywords: 3D, Human, estimation, pose

Pavllo, Dario and Feichtenhofer, Christoph and Grangier, David and Auli, Michael

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2019 via Local Bibsonomy

Keywords: 3D, Human, estimation, pose

[link]
This paper proposes a 3D human pose estimation in video method based on the dilated temporal convolutions applied on 2D keypoints (input to the network). 2D keypoints can be obtained using any person keypoint detector, but Mask R-CNN with ResNet-101 backbone, pre-trained on COCO and fine-tuned on 2D projections from Human3.6M, is used in the paper. https://i.imgur.com/CdQONiN.png The poses are presented as 2D keypoint coordinates in contrast to using heatmaps (i.e. Gaussian operation applied at the keypoint 2D location). Thus, 1D convolutions over the time series are applied, instead of 2D convolutions over heatmaps. The model is a fully convolutional architecture with residual connections that takes a sequence of 2D poses ( concatenated $(x,y)$ coordinates of the joints in each frame) as input and transforms them through temporal convolutions. https://i.imgur.com/tCZvt6M.png The `Slice` layer in the residual connection performs padding (or slicing) the sequence with replicas of boundary frames (to both left and right) to match the dimensions with the main block as zero-padding is not used in the convolution operations. 3D pose estimation is a difficult task particularly due to the limited data available online. Therefore, the authors propose semi-supervised approach of training the 2D->3D pose estimation by exploiting unlabeled video. Specifically, 2D keypoints are detected in the unlabeled video with any keypoint detector, then 3D keypoints are predicted from them and these 3D points are reprojected back to 2D (camera intrinsic parameters are required). This is idea similar to cycle consistency in the [CycleGAN](https://junyanz.github.io/CycleGAN/), for instance. https://i.imgur.com/CBHxFOd.png In the semi-supervised part (bottom part of the image above) training penalizes when the reprojected 2D keypoints are far from the original input. Weighted mean per-joint position error (WMPJPE) loss, weighted by the inverse of the depth to the object (since far objects should contribute less to the training than close ones) is used as the optimization goal. The two networks (`supervised` above, `semi-supervised` below) have the same architecture but do not share any weights. They are jointly optimized where `semi-supervised` part serves as a regularizer. They communicate through the path aiming to make sure that the mean bone length of the above and below branches match. The interesting tendency is observed from the MPJPE analysis with different amounts of supervised and unsupervised data available. Basically, the `semi-supervised` approach becomes more effective when less labeled data is available. https://i.imgur.com/bHpVcSi.png Additionally, the error is reduced when the ground truth keypoints are used. This means that a robust and accurate 2D keypoint detector is essential for the accurate 3D pose estimation in this setting. https://i.imgur.com/rhhTDfo.png |

Identity Mappings in Deep Residual Networks

He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian

European Conference on Computer Vision - 2016 via Local Bibsonomy

Keywords: dblp

He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian

European Conference on Computer Vision - 2016 via Local Bibsonomy

Keywords: dblp

[link]
This is follow-up work to the ResNets paper. It studies the propagation formulations behind the connections of deep residual networks and performs ablation experiments. A residual block can be represented with the equations $y_l = h(x_l) + F(x_l, W_l); x_{l+1} = f(y_l)$. $x_l$ is the input to the l-th unit and $x_{l+1}$ is the output of the l-th unit. In the original ResNets paper, $h(x_l) = x_l$, $f$ is ReLu, and F consists of 2-3 convolutional layers (bottleneck architecture) with BN and ReLU in between. In this paper, they propose a residual block with both $h(x)$ and $f(x)$ as identity mappings, which trains faster and performs better than their earlier baseline. Main contributions: - Identity skip connections work much better than other multiplicative interactions that they experiment with: - Scaling $(h(x) = \lambda x)$: Gradients can explode or vanish depending on whether modulating scalar \lambda > 1 or < 1. - Gating ($1-g(x)$ for skip connection and $g(x)$ for function F): For gradients to propagate freely, $g(x)$ should approach 1, but F gets suppressed, hence suboptimal. This is similar to highway networks. $g(x)$ is a 1x1 convolutional layer. - Gating (shortcut-only): Setting high biases pushes initial $g(x)$ towards identity mapping, and test error is much closer to baseline. - 1x1 convolutional shortcut: These work well for shallower networks (~34 layers), but training error becomes high for deeper networks, probably because they impede gradient propagation. - Experiments on activations. - BN after addition messes up information flow, and performs considerably worse. - ReLU before addition forces the signal to be non-negative, so the signal is monotonically increasing, while ideally a residual function should be free to take values in (-inf, inf). - BN + ReLU pre-activation works best. This also prevents overfitting, due to BN's regularizing effect. Input signals to all weight layers are normalized. ## Strengths - Thorough set of experiments to show that identity shortcut connections are easiest for the network to learn. Activation of any deeper unit can be written as the sum of the activation of a shallower unit and a residual function. This also implies that gradients can be directly propagated to shallower units. This is in contrast to usual feedforward networks, where gradients are essentially a series of matrix-vector products, that may vanish, as networks grow deeper. - Improved accuracies than their previous ResNets paper. ## Weaknesses / Notes - Residual units are useful and share the same core idea that worked in LSTM units. Even though stacked non-linear layers are capable of asymptotically approximating any arbitrary function, it is clear from recent work that residual functions are much easier to approximate than the complete function. The [latest Inception paper](http://arxiv.org/abs/1602.07261) also reports that training is accelerated and performance is improved by using identity skip connections across Inception modules. - It seems like the degradation problem, which serves as motivation for residual units, exists in the first place for non-idempotent activation functions such as sigmoid, hyperbolic tan. This merits further investigation, especially with recent work on function-preserving transformations such as [Network Morphism](http://arxiv.org/abs/1603.01670), which expands the Net2Net idea to sigmoid, tanh, by using parameterized activations, initialized to identity mappings. |

Deep Networks with Stochastic Depth

Huang, Gao and Sun, Yu and Liu, Zhuang and Sedra, Daniel and Weinberger, Kilian

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: deeplearning, acreuser

Huang, Gao and Sun, Yu and Liu, Zhuang and Sedra, Daniel and Weinberger, Kilian

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: deeplearning, acreuser

[link]
**Dropout for layers** sums it up pretty well. The authors built on the idea of [deep residual networks](http://arxiv.org/abs/1512.03385) to use identity functions to skip layers. The main advantages: * Training speed-ups by about 25% * Huge networks without overfitting ## Evaluation * [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html): 4.91% error ([SotA](https://martin-thoma.com/sota/#image-classification): 2.72 %) Training Time: ~15h * [CIFAR-100](https://www.cs.toronto.edu/~kriz/cifar.html): 24.58% ([SotA](https://martin-thoma.com/sota/#image-classification): 17.18 %) Training time: < 16h * [SVHN](http://ufldl.stanford.edu/housenumbers/): 1.75% ([SotA](https://martin-thoma.com/sota/#image-classification): 1.59 %) - trained for 50 epochs, begging with a LR of 0.1, divided by 10 after 30 epochs and 35. Training time: < 26h |

About