Welcome to ShortScience.org! |

- ShortScience.org is a platform for post-publication discussion aiming to improve accessibility and reproducibility of research ideas.
- The website has 1583 public summaries, mostly in machine learning, written by the community and organized by paper, conference, and year.
- Reading summaries of papers is useful to obtain the perspective and insight of another reader, why they liked or disliked it, and their attempt to demystify complicated sections.
- Also, writing summaries is a good exercise to understand the content of a paper because you are forced to challenge your assumptions when explaining it.
- Finally, you can keep up to date with the flood of research by reading the latest summaries on our Twitter and Facebook pages.

Distributional Smoothing with Virtual Adversarial Training

Takeru Miyato and Shin-ichi Maeda and Masanori Koyama and Ken Nakae and Shin Ishii

arXiv e-Print archive - 2015 via Local arXiv

Keywords: stat.ML, cs.LG

**First published:** 2015/07/02 (7 years ago)

**Abstract:** We propose local distributional smoothness (LDS), a new notion of smoothness
for statistical model that can be used as a regularization term to promote the
smoothness of the model distribution. We named the LDS based regularization as
virtual adversarial training (VAT). The LDS of a model at an input datapoint is
defined as the KL-divergence based robustness of the model distribution against
local perturbation around the datapoint. VAT resembles adversarial training,
but distinguishes itself in that it determines the adversarial direction from
the model distribution alone without using the label information, making it
applicable to semi-supervised learning. The computational cost for VAT is
relatively low. For neural network, the approximated gradient of the LDS can be
computed with no more than three pairs of forward and back propagations. When
we applied our technique to supervised and semi-supervised learning for the
MNIST dataset, it outperformed all the training methods other than the current
state of the art method, which is based on a highly advanced generative model.
We also applied our method to SVHN and NORB, and confirmed our method's
superior performance over the current state of the art semi-supervised method
applied to these datasets.
more
less

Takeru Miyato and Shin-ichi Maeda and Masanori Koyama and Ken Nakae and Shin Ishii

arXiv e-Print archive - 2015 via Local arXiv

Keywords: stat.ML, cs.LG

[link]
Miyato et al. propose distributional smoothing (or virtual adversarial training) as defense against adversarial examples. However, I think that both terms do not give a good intuition of what is actually done. Essentially, a regularization term is introduced. Letting $p(y|x,\theta)$ be the learned model, the regularizer is expressed as $\text{KL}(p(y|x,\theta)|p(y|x+r,\theta)$ where $r$ is the perturbation that maximizes the Kullback-Leibler divergence above, i.e. $r = \arg\max_r \{\text{KL}(p(y|x,\theta)|p(y|x+r,\theta) | \|r\|_2 \leq \epsilon\}$ with hyper-parameter $\epsilon$. Essentially, the regularizer is supposed to “simulate” adversarial training – thus, the method is also called virtual adversarial training. The discussed implementation, however, is somewhat cumbersome. In particular, $r$ cannot be computed using first-order methods as the gradient of $\text{KL}$ is $0$ for $r = 0$. So a second-order method is used – for which the Hessian needs to be approximated and the corresponding eigenvectors need to be computed. For me it is unclear why $r$ cannot be initialized randomly to solve this issue … Then, the derivative of the regularizer needs to be computed during training. Here, the authors make several simplifications (such as fixing $\theta$ in the first part of the Kullback-Leibler divergence and ignoring the derivative of $r$ w.r.t. $\theta$). Overall, however, I like the idea of “virtual” adversarial training as it avoids the need of explicitly using attacks during training to craft adversarial examples. Then, the trained model is often robust against the chosen attacks, but new adversarial examples can be found easily through novel attacks. Also view this summary at [davidstutz.de](https://davidstutz.de/category/reading/). |

AI Safety Gridworlds

Jan Leike and Miljan Martic and Victoria Krakovna and Pedro A. Ortega and Tom Everitt and Andrew Lefrancq and Laurent Orseau and Shane Legg

arXiv e-Print archive - 2017 via Local arXiv

Keywords: cs.LG, cs.AI

**First published:** 2017/11/27 (5 years ago)

**Abstract:** We present a suite of reinforcement learning environments illustrating
various safety properties of intelligent agents. These problems include safe
interruptibility, avoiding side effects, absent supervisor, reward gaming, safe
exploration, as well as robustness to self-modification, distributional shift,
and adversaries. To measure compliance with the intended safe behavior, we
equip each environment with a performance function that is hidden from the
agent. This allows us to categorize AI safety problems into robustness and
specification problems, depending on whether the performance function
corresponds to the observed reward function. We evaluate A2C and Rainbow, two
recent deep reinforcement learning agents, on our environments and show that
they are not able to solve them satisfactorily.
more
less

Jan Leike and Miljan Martic and Victoria Krakovna and Pedro A. Ortega and Tom Everitt and Andrew Lefrancq and Laurent Orseau and Shane Legg

arXiv e-Print archive - 2017 via Local arXiv

Keywords: cs.LG, cs.AI

[link]
The paper proposes a standardized benchmark for a number of safety-related problems, and provides an implementation that can be used by other researchers. The problems fall in two categories: specification and robustness. Specification refers to cases where it is difficult to specify a reward function that encodes our intentions. Robustness means that agent's actions should be robust when facing various complexities of a real-world environment. Here is a list of problems: 1. Specification: 1. Safe interruptibility: agents should neither seek nor avoid interruption. 2. Avoiding side effects: agents should minimize effects unrelated to their main objective. 3. Absent supervisor: agents should not behave differently depending on presence of supervisor. 4. Reward gaming: agents should not try to exploit errors in reward function. 2. Robustness: 1. Self-modification: agents should behave well when environment allows self-modification. 2. Robustness to distributional shift: agents should behave robustly when test differs from train. 3. Robustness to adversaries: agents should detect and adapt to adversarial intentions in environment. 4. Safe exploration: agent should behave safely during learning as well. It is worth noting that problems 1.2, 1.4, 2.2, and 2.4 have been described back in "Concrete Problems in AI Safety". It is suggested that each of these problems be tackled in a "gridworld" environment — a 2D environment where the agent lives on a grid, and the only actions it has available are up/down/left/right movements. The benchmark consists of 10 environments, each corresponding to one of 8 problems mentioned above. Each of the environments is an extremely simple instance of the problem, but nevertheless they are of interest as current SotA algorithms usually don't solve the posed task. Specifically, the authors trained A2C and Rainbow with DQN update on each of the environments and showed that both algorithms fail on all of specification problems, except for Rainbow on 1.1. This is expected, as neither of those algorithms are designed for cases where reward function is misspecified. Both algorithms failed on 2.2--2.4, except for A2C on 2.3. On 2.1, the authors swapped A2C for Rainbow with Sarsa update and showed that Rainbow DQN failed while Rainbow Sarsa performed well. Overall, this is a good groundwork paper with only a few questionable design decisions, such as the design of actual reward in 1.2. It is unlikely to have impact similar to MNIST or ImageNet, but it should stimulate safety-related research. |

Algorithms for Non-negative Matrix Factorization

Lee, Daniel D. and Seung, H. Sebastian

Neural Information Processing Systems Conference - 2000 via Local Bibsonomy

Keywords: dblp

Lee, Daniel D. and Seung, H. Sebastian

Neural Information Processing Systems Conference - 2000 via Local Bibsonomy

Keywords: dblp

[link]
We want to find two matrices $W$ and $H$ such that $V = WH$. Often a goal is to determine underlying patterns in the relationships between the concepts represented by each row and column. $W$ is some $m$ by $n$ matrix and we want the inner dimension of the factorization to be $r$. So $$\underbrace{V}_{m \times n} = \underbrace{W}_{m \times r} \underbrace{H}_{r \times n}$$ Let's consider an example matrix where of three customers (as rows) are associated with three movies (the columns) by a rating value. $$ V = \left[\begin{array}{c c c} 5 & 4 & 1 \\\\ 4 & 5 & 1 \\\\ 2 & 1 & 5 \end{array}\right] $$ We can decompose this into two matrices with $r = 1$. First lets do this without any non-negative constraint using an SVD reshaping matrices based on removing eigenvalues: $$ W = \left[\begin{array}{c c c} -0.656 \\\ -0.652 \\\ -0.379 \end{array}\right], H = \left[\begin{array}{c c c} -6.48 & -6.26 & -3.20\\\\ \end{array}\right] $$ We can also decompose this into two matrices with $r = 1$ subject to the constraint that $w_{ij} \ge 0$ and $h_{ij} \ge 0$. (Note: this is only possible when $v_{ij} \ge 0$): $$ W = \left[\begin{array}{c c c} 0.388 \\\\ 0.386 \\\\ 0.224 \end{array}\right], H = \left[\begin{array}{c c c} 11.22 & 10.57 & 5.41 \\\\ \end{array}\right] $$ Both of these $r=1$ factorizations reconstruct matrix $V$ with the same error. $$ V \approx WH = \left[\begin{array}{c c c} 4.36 & 4.11 & 2.10 \\\ 4.33 & 4.08 & 2.09 \\\ 2.52 & 2.37 & 1.21 \\\ \end{array}\right] $$ If they both yield the same reconstruction error then why is a non-negativity constraint useful? We can see above that it is easy to observe patterns in both factorizations such as similar customers and similar movies. `TODO: motivate why NMF is better` #### Paper Contribution This paper discusses two approaches for iteratively creating a non-negative $W$ and $H$ based on random initial matrices. The paper discusses a multiplicative update rule where the elements of $W$ and $H$ are iteratively transformed by scaling each value such that error is not increased. The multiplicative approach is discussed in contrast to an additive gradient decent based approach where small corrections are iteratively applied. The multiplicative approach can be reduced to this by setting the learning rate ($\eta$) to a ratio that represents the magnitude of the element in $H$ to the scaling factor of $W$ on $H$. ### Still a draft |

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning

Ren, Zhongzheng and Yeh, Raymond A. and Schwing, Alexander G.

- 2020 via Local Bibsonomy

Keywords: dataset, semi-supervised, machine-learning, data, 2020

Ren, Zhongzheng and Yeh, Raymond A. and Schwing, Alexander G.

- 2020 via Local Bibsonomy

Keywords: dataset, semi-supervised, machine-learning, data, 2020

[link]
This paper argues that, in semi-supervised learning, it's suboptimal to use the same weight for all examples (as happens implicitly, when the unsupervised component of the loss for each example is just added together directly. Instead, it tries to learn weights for each specific data example, through a meta-learning-esque process. The form of semi-supervised learning being discussed here is label-based consistency loss, where a labeled image is augmented and run through the current version of the model, and the model is optimized to try to induce the same loss for the augmented image as the unaugmented one. The premise of the authors argument for learning per-example weights is that, ideally, you would enforce consistency loss less on examples where a model was unconfident in its label prediction for an unlabeled example. As a way to solve this, the authors suggest learning a vector of parameters - one for each example in the dataset - where element i in the vector is a weight for element i of the dataset, in the summed-up unsupervised loss. They do this via a two-step process, where first they optimize the parameters of the network given the example weights, and then the optimize the example weights themselves. To optimize example weights, they calculate a gradient of those weights on the post-training validation loss, which requires backpropogating through the optimization process (to determine how different weights might have produced a different gradient, which might in turn have produced better validation loss). This requires calculating the inverse Hessian (second derivative matrix of the loss), which is, generally speaking, a quite costly operation for huge-parameter nets. To lessen this cost, they pretend that only the final layer of weights in the network are being optimized, and so only calculate the Hessian with respect to those weights. They also try to minimize cost by only updating the example weights for the examples that were used during the previous update step, since, presumably those were the only ones we have enough information to upweight or downweight. With this model, the authors achieve modest improvements - performance comparable to or within-error-bounds better than the current state of the art, FixMatch. Overall, I find this paper a little baffling. It's just a crazy amount of effort to throw into something that is a minor improvement. A few issues I have with the approach: - They don't seem to have benchmarked against the simpler baseline of some inverse of using Dropout-estimated uncertainty as the weight on examples, which would, presumably, more directly capture the property of "is my model unsure of its prediction on this unlabeled example" - If the presumed need for this is the lack of certainty of the model, that's a non-stationary problem that's going to change throughout the course of training, and so I'd worry that you're basically taking steps in the direction of a moving target - Despite using techniques rooted in meta-learning, it doesn't seem like this models learns anything generalizable - it's learning index-based weights on specific examples, which doesn't give it anything useful it can do with some new data point it finds that it wasn't specifically trained on Given that, I think I'd need to see a much stronger case for dramatic performance benefits for something like this to seem like it was worth the increase in complexity (not to mention computation, even with the optimized Hessian scheme) |

Variational Dropout and the Local Reparameterization Trick

Blum, Avrim and Haghtalab, Nika and Procaccia, Ariel D.

Neural Information Processing Systems Conference - 2015 via Local Bibsonomy

Keywords: dblp

Blum, Avrim and Haghtalab, Nika and Procaccia, Ariel D.

Neural Information Processing Systems Conference - 2015 via Local Bibsonomy

Keywords: dblp

[link]
This paper starts by introducing a trick to reduce the variance of stochastic gradient variational Bayes (SGVB) estimators. In neural networks, SGVB consists in learning a variational (e.g. diagonal Gaussian) posterior over the weights and biases of neural networks, through a procedure that (for the most part) alternates between adding (Gaussian) noise to the model's parameters and then performing a model update with backprop. The authors present a local reparameterization trick, which exploits the fact that the Gaussian noise added into the weights could instead be added directly into the pre-activation (i.e. before the activation fonction) vectors during forward propagation. This is due to the fact that computing the pre-activation is a linear operation, thus noise at that level is also Gaussian. The advantage of doing so is that, in the context of minibatch training, one can efficiently then add independent noise to the pre-activation vectors for each example of the minibatch. The nature of the local reparameterization trick implies that this is equivalent to using one corrupted version of the weights for each example in the minibatch, something that wouldn't be practical computationally otherwise. This is in fact why, in normal SGVB, previous work would normally use a single corrupted version of the weights for all the minibatch. The authors demonstrate that using the local reparameterization trick yields stochastic gradients with lower variance, which should improve the speed of convergence. Then, the authors demonstrate that the Gaussian version of dropout (one that uses multiplicative Gaussian noise, instead of 0-1 masking noise) can be seen as the local reparameterization trick version of a SGVB objective, with some specific prior and variational posterior. In this SGVB view of Gaussian dropout, the dropout rate is an hyper-parameter of this prior, which can now be tuned by optimizing the variational lower bound of SGVB. In other words, we now have a method to also train the dropout rate! Moreover, it becomes possible to tune an individual dropout rate parameter for each layer, or even each parameter of the model. Experiments on MNIST confirm that tuning that parameter works and allows to reach good performance of various network sizes, compared to using a default dropout rate. ##### My two cents This is another thought provoking connection between Bayesian learning and dropout. Indeed, while Deep GPs have allowed to make a Bayesian connection with regular (binary) dropout learning \cite{journals/corr/GalG15}, this paper sheds light on a neat Bayesian connection for the Gaussian version of dropout. This is great, because it suggests that Gaussian dropout training is another legit way of modeling uncertainty in the parameters of neural networks. It's also nice that that connection also yielded a method for tuning the dropout rate automatically. I hope future work (by the authors or by others) can evaluate the quality of the corresponding variational posterior in terms of estimating uncertainty in the network and, in particular, in obtaining calibrated output probabilities. Little detail: I couldn't figure out whether the authors tuned a single dropout rate for the whole network, or used many rates, for instance one per parameter, as they suggest can be done. |

About