![]() |
Welcome to ShortScience.org! |
![]() ![]() ![]() |
[link]
We want to find two matrices $W$ and $H$ such that $V = WH$. Often a goal is to determine underlying patterns in the relationships between the concepts represented by each row and column. $W$ is some $m$ by $n$ matrix and we want the inner dimension of the factorization to be $r$. So $$\underbrace{V}_{m \times n} = \underbrace{W}_{m \times r} \underbrace{H}_{r \times n}$$ Let's consider an example matrix where of three customers (as rows) are associated with three movies (the columns) by a rating value. $$ V = \left[\begin{array}{c c c} 5 & 4 & 1 \\\\ 4 & 5 & 1 \\\\ 2 & 1 & 5 \end{array}\right] $$ We can decompose this into two matrices with $r = 1$. First lets do this without any non-negative constraint using an SVD reshaping matrices based on removing eigenvalues: $$ W = \left[\begin{array}{c c c} -0.656 \\\ -0.652 \\\ -0.379 \end{array}\right], H = \left[\begin{array}{c c c} -6.48 & -6.26 & -3.20\\\\ \end{array}\right] $$ We can also decompose this into two matrices with $r = 1$ subject to the constraint that $w_{ij} \ge 0$ and $h_{ij} \ge 0$. (Note: this is only possible when $v_{ij} \ge 0$): $$ W = \left[\begin{array}{c c c} 0.388 \\\\ 0.386 \\\\ 0.224 \end{array}\right], H = \left[\begin{array}{c c c} 11.22 & 10.57 & 5.41 \\\\ \end{array}\right] $$ Both of these $r=1$ factorizations reconstruct matrix $V$ with the same error. $$ V \approx WH = \left[\begin{array}{c c c} 4.36 & 4.11 & 2.10 \\\ 4.33 & 4.08 & 2.09 \\\ 2.52 & 2.37 & 1.21 \\\ \end{array}\right] $$ If they both yield the same reconstruction error then why is a non-negativity constraint useful? We can see above that it is easy to observe patterns in both factorizations such as similar customers and similar movies. `TODO: motivate why NMF is better` #### Paper Contribution This paper discusses two approaches for iteratively creating a non-negative $W$ and $H$ based on random initial matrices. The paper discusses a multiplicative update rule where the elements of $W$ and $H$ are iteratively transformed by scaling each value such that error is not increased. The multiplicative approach is discussed in contrast to an additive gradient decent based approach where small corrections are iteratively applied. The multiplicative approach can be reduced to this by setting the learning rate ($\eta$) to a ratio that represents the magnitude of the element in $H$ to the scaling factor of $W$ on $H$. ### Still a draft ![]() |
[link]
This paper argues that, in semi-supervised learning, it's suboptimal to use the same weight for all examples (as happens implicitly, when the unsupervised component of the loss for each example is just added together directly. Instead, it tries to learn weights for each specific data example, through a meta-learning-esque process. The form of semi-supervised learning being discussed here is label-based consistency loss, where a labeled image is augmented and run through the current version of the model, and the model is optimized to try to induce the same loss for the augmented image as the unaugmented one. The premise of the authors argument for learning per-example weights is that, ideally, you would enforce consistency loss less on examples where a model was unconfident in its label prediction for an unlabeled example. As a way to solve this, the authors suggest learning a vector of parameters - one for each example in the dataset - where element i in the vector is a weight for element i of the dataset, in the summed-up unsupervised loss. They do this via a two-step process, where first they optimize the parameters of the network given the example weights, and then the optimize the example weights themselves. To optimize example weights, they calculate a gradient of those weights on the post-training validation loss, which requires backpropogating through the optimization process (to determine how different weights might have produced a different gradient, which might in turn have produced better validation loss). This requires calculating the inverse Hessian (second derivative matrix of the loss), which is, generally speaking, a quite costly operation for huge-parameter nets. To lessen this cost, they pretend that only the final layer of weights in the network are being optimized, and so only calculate the Hessian with respect to those weights. They also try to minimize cost by only updating the example weights for the examples that were used during the previous update step, since, presumably those were the only ones we have enough information to upweight or downweight. With this model, the authors achieve modest improvements - performance comparable to or within-error-bounds better than the current state of the art, FixMatch. Overall, I find this paper a little baffling. It's just a crazy amount of effort to throw into something that is a minor improvement. A few issues I have with the approach: - They don't seem to have benchmarked against the simpler baseline of some inverse of using Dropout-estimated uncertainty as the weight on examples, which would, presumably, more directly capture the property of "is my model unsure of its prediction on this unlabeled example" - If the presumed need for this is the lack of certainty of the model, that's a non-stationary problem that's going to change throughout the course of training, and so I'd worry that you're basically taking steps in the direction of a moving target - Despite using techniques rooted in meta-learning, it doesn't seem like this models learns anything generalizable - it's learning index-based weights on specific examples, which doesn't give it anything useful it can do with some new data point it finds that it wasn't specifically trained on Given that, I think I'd need to see a much stronger case for dramatic performance benefits for something like this to seem like it was worth the increase in complexity (not to mention computation, even with the optimized Hessian scheme) ![]() |
[link]
This is an interestingly pragmatic paper that makes a super simple observation. Often, we may want a usable network with fewer parameters, to make our network more easily usable on small devices. It's been observed (by these same authors, in fact), that pruned networks can achieve comparable weights to their fully trained counterparts if you rewind and retrain from early in the training process, to compensate for the loss of the (not ultimately important) pruned weights. This observation has been dubbed the "Lottery Ticket Hypothesis", after the idea that there's some small effective subnetwork you can find if you sample enough networks. Given these two facts - the usefulness of pruning, and the success of weight rewinding - the authors explore the effectiveness of various ways to train after pruning. Current standard practice is to prune low-magnitude weights, and then continue training remaining weights from values they had at pruning time, keeping the final learning rate of the network constant. The authors find that: 1. Weight rewinding, where you rewind weights to *near* their starting value, and then retrain using the learning rates of early in training, outperforms fine tuning from the place weights were when you pruned but, also 2. Learning rate rewinding, where you keep weights as they are, but rewind learning rates to what they were early in training, are actually the most effective for a given amount of training time/search cost To me, this feels a little bit like burying the lede: the takeaway seems to be that when you prune, it's beneficial to make your network more "elastic" (in the metaphor-to-neuroscience sense) so it can more effectively learn to compensate for the removed neurons. So, what was really valuable in weight rewinding was the ability to "heat up" learning on a smaller set of weights, so they could adapt more quickly. And the fact that learning rate rewinding works better than weight rewinding suggests that there is value in the learned weights after all, that value is just outstripped by the benefit of rolling back to old learning rates. All in all, not a super radical conclusion, but a useful and practical one to have so clearly laid out in a paper. ![]() |
[link]
Federated learning is the problem of training a model that incorporates updates from the data of many individuals, without having direct access to that data, or having to store it. This is potentially desirable both for reasons of privacy (not wanting to have access to private data in a centralized way), and for potential benefits to transport cost when data needed to train models exists on a user's device, and would require a lot of bandwidth to transfer to a centralized server. Historically, the default way to do Federated Learning was with an algorithm called FedSGD, which worked by: - Sending a copy of the current model to each device/client - Calculating a gradient update to be applied on top of that current model given a batch of data sampled from the client's device - Sending that gradient back to the central server - Averaging those gradients and applying them all at once to a central model The authors note that this approach is equivalent to one where a single device performs a step of gradient descent locally, sends the resulting *model* back to the the central server, and performs model averaging by averaging the parameter vectors there. Given that, and given their observation that, in federated learning, communication of gradients and models is generally much more costly than the computation itself (since the computation happens across so many machines), they ask whether the communication required to get to a certain accuracy could be better optimized by performing multiple steps of gradient calculation and update on a given device, before sending the resulting model back to a central server to be average with other clients models. Specifically, their algorithm, FedAvg, works by: - Dividing the data on a given device into batches of size B - Calculating an update on each batch and applying them sequentially to the starting model sent over the wire from the server - Repeating this for E epochs Conceptually, this should work perfectly well in the world where data from each batch is IID - independently drawn from the same distribution. But that is especially unlikely to be true in the case of federated learning, when a given user and device might have very specialized parts of the data space, and prior work has shown that there exist pathological cases where averaged models can perform worse than either model independently, even *when* the IID condition is met. The authors experiment empirically ask the question whether these sorts of pathological cases arise when simulating a federated learning procedure over MNIST and a language model trained on Shakespeare, trying over a range of hyperparameters (specifically B and E), and testing the case where data is heavily non-IID (in their case: where different "devices" had non-overlapping sets of digits). https://i.imgur.com/xq9vi8S.png They show that, in both the IID and non-IID settings, they are able to reach their target accuracy, and are able to do so with many fewer rounds of communciation than are required by FedSGD (where an update is sent over the wire, and a model sent back, for each round of calculation done on the device.) The authors argue that this shows the practical usefulness of a Federated Learning approach that does more computation on individual devices before updating, even in the face of theoretical pathological cases. ![]() |
[link]
Kumar et al. propose an algorithm to learn in batch reinforcement learning (RL), a setting where an agent learns purely form a fixed batch of data, $B$, without any interactions with the environments. The data in the batch is collected according to a batch policy $\pi_b$. Whereas most previous methods (like BCQ) constrain the learned policy to stay close to the behavior policy, Kumar et al. propose bootstrapping error accumulation reduction (BEAR), which constrains the newly learned policy to place some probability mass on every non negligible action. The difference is illustrated in the picture from the BEAR blog post: https://i.imgur.com/zUw7XNt.png The behavior policy is in both images the dotted red line, the left image shows the policy matching where the algorithm is constrained to the purple choices, while the right image shows the support matching. **Theoretical Contribution:** The paper analysis formally how the use of out-of-distribution actions to compute the target in the Bellman equation influences the back-propagated error. Firstly a distribution constrained backup operator is defined as $T^{\Pi}Q(s,a) = \mathbb{E}[R(s,a) + \gamma \max_{\pi \in \Pi} \mathbb{E}_{P(s' \vert s,a)} V(s')]$ and $V(s) = \max_{\pi \in \Pi} \mathbb{E}_{\pi}[Q(s,a)]$ which considers only policies $\pi \in \Pi$. It is possible that the optimal policy $\pi^*$ is not contained in the policy set $\Pi$, thus there is a suboptimallity constant $\alpha (\Pi) = \max_{s,a} \vert \mathcal{T}^{\Pi}Q^{*}(s,a) - \mathcal{T}Q^{*}(s,a) ]\vert $ which captures how far $\pi^{*}$ is from $\Pi$. Letting $P^{\pi_i}$ be the transition-matrix when following policy $\pi_i$, $\rho_0$ the state marginal distribution of the training data in the batch and $\pi_1, \dots, \pi_k \in \Pi $. The error analysis relies upon a concentrability assumption $\rho_0 P^{\pi_1} \dots P^{\pi_k} \leq c(k)\mu(s)$, with $\mu(s)$ the state marginal. Note that $c(k)$ might be infinite if the support of $\Pi$ is not contained in the state marginal of the batch. Using the coefficients $c(k)$ a concentrability coefficient is defined as: $C(\Pi) = (1-\gamma)^2\sum_{k=1}^{\infty}k \gamma^{k-1}c(k).$ The concentrability takes values between 1 und $\infty$, where 1 corresponds to the case that the batch data were collected by $\pi$ and $\Pi = \{\pi\}$ and $\infty$ to cases where $\Pi$ has support outside of $\pi$. Combining this Kumar et a. get a bound of the Bellman error for distribution constrained value iteration with the constrained Bellman operator $T^{\Pi}$: $\lim_{k \rightarrow \infty} \mathbb{E}_{\rho_0}[\vert V^{\pi_k}(s)- V^{*}(s)] \leq \frac{\gamma}{(1-\gamma^2)} [C(\Pi) \mathbb{E}_{\mu}[\max_{\pi \in \Pi}\mathbb{E}_{\pi}[\delta(s,a)] + \frac{1-\gamma}{\gamma}\alpha(\Pi) ] ]$, where $\delta(s,a)$ is the Bellman error. This presents the inherent batch RL trade-off between keeping policies close to the behavior policy of the batch (captured by $C(\Pi)$ and keeping $\Pi$ sufficiently large (captured by $\alpha(\Pi)$). It is finally proposed to use support sets to construct $\Pi$, that is $\Pi_{\epsilon} = \{\pi \vert \pi(a \vert s)=0 \text{ whenever } \beta(a \vert s) < \epsilon \}$. This amounts to the set of all policies that place probability on all non-negligible actions of the behavior policy. For this particular choice of $\Pi = \Pi_{\epsilon}$ the concentrability coefficient can be bounded. **Algorithm**: The algorithm has an actor critic style, where the Q-value to update the policy is taken to be the minimum over the ensemble. The support constraint to place at least some probability mass on every non negligible action from the batch is enforced via sampled MMD. The proposed algorithm is a member of the policy regularized algorithms as the policy is updated to optimize: $\pi_{\Phi} = \max_{\pi} \mathbb{E}_{s \sim B} \mathbb{E}_{a \sim \pi(\cdot \vert s)} [min_{j = 1 \dots, k} Q_j(s,a)] s.t. \mathbb{E}_{s \sim B}[MMD(D(s), \pi(\cdot \vert s))] \leq \epsilon$ The Bellman target to update the Q-functions is computed as the convex combination of minimum and maximum of the ensemble. **Experiments** The experiments use the Mujoco environments Halfcheetah, Walker, Hopper and Ant. Three scenarios of batch collection, always consisting of 1Mio. samples, are considered: - completely random behavior policy - partially trained behavior policy - optimal policy as behavior policy The experiments confirm that BEAR outperforms other off-policy methods like BCQ or KL-control. The ablations show further that the choice of MMD is crucial as it is sometimes on par and sometimes substantially better than choosing KL-divergence. ![]() |