Welcome to ShortScience.org! |

- ShortScience.org is a platform for post-publication discussion aiming to improve accessibility and reproducibility of research ideas.
- The website has 1583 public summaries, mostly in machine learning, written by the community and organized by paper, conference, and year.
- Reading summaries of papers is useful to obtain the perspective and insight of another reader, why they liked or disliked it, and their attempt to demystify complicated sections.
- Also, writing summaries is a good exercise to understand the content of a paper because you are forced to challenge your assumptions when explaining it.
- Finally, you can keep up to date with the flood of research by reading the latest summaries on our Twitter and Facebook pages.

GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data

Rong, Yu and Bian, Yatao and Xu, Tingyang and Xie, Weiyang and Wei, Ying and Huang, Wenbing and Huang, Junzhou

arXiv e-Print archive - 2020 via Local Bibsonomy

Keywords: dblp

Rong, Yu and Bian, Yatao and Xu, Tingyang and Xie, Weiyang and Wei, Ying and Huang, Wenbing and Huang, Junzhou

arXiv e-Print archive - 2020 via Local Bibsonomy

Keywords: dblp

[link]
Large-scale transformers on unsupervised text data have been wildly successful in recent years; arguably, the most successful single idea in the last ~3 years of machine learning. Given that, it's understandable that different domains within ML want to take their shot at seeing whether the same formula will work for them as well. This paper applies the principles of (1) transformers and (2) large-scale unlabeled data to the problem of learning informative embeddings of molecular graphs. Labeling is a problem in much of machine learning - it's costly, and narrowly defined in terms of a certain task - but that problem is even more exacerbated when it comes to labeling properties of molecules, since they typically require wetlab chemistry to empirically measure. Given that, and also given the fact that we often want to predict new properties - like effectiveness against a new targetable drug receptor - that we don't yet have data for, finding a way to learn and transfer from unsupervised data has the potential to be quite valuable in the molecular learning sphere. There are two main conceptual parts to this paper and its method - named GROVER, in true-to-ML-form tortured acronym style. The first is the actual architecture of their model itself, which combines both a message-passing Graph Neural Network to aggregate local information, and a Transformer to aggregate global information. The paper was a bit vague here, but the way I understand it is: https://i.imgur.com/JY4vRdd.png - There are parallel GNN + Transformer stacks for both edges and nodes, each of which outputs both a node and edge embedding, for four embeddings total. I'll describe the one for nodes, and the parallel for edges operates the same way, except that hidden states live on edges rather than nodes, and attention is conducted over edges rather than nodes - In the NodeTransformer version, a message passing NN (of I'm not sure how many layers) performs neighborhood aggregation (aggregating the hidden states of neighboring nodes and edges, then weight-transforming them, then aggregating again) until each node has a representation that has "absorbed" in information from a few hops out of its surrounding neighborhood. My understanding is that there is a separate MPNN for queries, keys, and values, and so each nodes end up with three different vectors for these three things. - Multi-headed attention is then performed over these node representations, in the normal way, where all keys and queries are dot-product-ed together, and put into a softmax to calculate a weighted average over the values - We now have node-level representations that combine both local and global information. These node representations are then aggregated into both node and edge representations, and each is put into a MLP layer and Layer Norm before finally outputting a node-based node and edge representation. This is then joined by an edge-based node and edge representation from the parallel stack. These are aggregated on a full-graph level to predict graph-level properties https://i.imgur.com/NNl6v4Y.png The other component of the GROVER model is the way this architecture is actually trained - without explicit supervised labels. The authors use two tasks - one local, and one global. The local task constructs labels based on local contextual properties of a given atom - for example, the atom here has one double-bonded Nitrogen and one single-bonded Oxygen in its local environment - and tries to predict those labels given the representations of that atom (or node). The global task uses RDKit (an analytically constructed molecular analysis kit) to identify 85 different modifs or functional groups in the molecule, and encodes those into an 85-long one-hot vector that is being predicted on a graph level. https://i.imgur.com/jzbYchA.png With these two components, GROVER is pretrained on 10 million unlabeled molecules, and then evaluated in transfer settings where its representations are fine-tuned on small amounts of labeled data. The results are pretty impressive - it achieves new SOTA performance by relatively large amounts on all tasks, even relative to exist semi-supervised pretraining methods that similarly have access to more data. The authors perform ablations to show that it's important to do the graph-aggregation step before a transformer (the alternative being just doing a transformer on raw node and edge features), and also show that their architecture without pretraining (just used directly in downstream tasks) also performs worse. One thing I wish they'd directly ablated was the value-add of the local (also referred to as "contextual") and global semi-supervised tasks. Naively, I'd guess that most of the performance gain came from the global task, but it's hard to know without them having done the test directly. |

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning

Ren, Zhongzheng and Yeh, Raymond A. and Schwing, Alexander G.

- 2020 via Local Bibsonomy

Keywords: dataset, semi-supervised, machine-learning, data, 2020

Ren, Zhongzheng and Yeh, Raymond A. and Schwing, Alexander G.

- 2020 via Local Bibsonomy

Keywords: dataset, semi-supervised, machine-learning, data, 2020

[link]
This paper argues that, in semi-supervised learning, it's suboptimal to use the same weight for all examples (as happens implicitly, when the unsupervised component of the loss for each example is just added together directly. Instead, it tries to learn weights for each specific data example, through a meta-learning-esque process. The form of semi-supervised learning being discussed here is label-based consistency loss, where a labeled image is augmented and run through the current version of the model, and the model is optimized to try to induce the same loss for the augmented image as the unaugmented one. The premise of the authors argument for learning per-example weights is that, ideally, you would enforce consistency loss less on examples where a model was unconfident in its label prediction for an unlabeled example. As a way to solve this, the authors suggest learning a vector of parameters - one for each example in the dataset - where element i in the vector is a weight for element i of the dataset, in the summed-up unsupervised loss. They do this via a two-step process, where first they optimize the parameters of the network given the example weights, and then the optimize the example weights themselves. To optimize example weights, they calculate a gradient of those weights on the post-training validation loss, which requires backpropogating through the optimization process (to determine how different weights might have produced a different gradient, which might in turn have produced better validation loss). This requires calculating the inverse Hessian (second derivative matrix of the loss), which is, generally speaking, a quite costly operation for huge-parameter nets. To lessen this cost, they pretend that only the final layer of weights in the network are being optimized, and so only calculate the Hessian with respect to those weights. They also try to minimize cost by only updating the example weights for the examples that were used during the previous update step, since, presumably those were the only ones we have enough information to upweight or downweight. With this model, the authors achieve modest improvements - performance comparable to or within-error-bounds better than the current state of the art, FixMatch. Overall, I find this paper a little baffling. It's just a crazy amount of effort to throw into something that is a minor improvement. A few issues I have with the approach: - They don't seem to have benchmarked against the simpler baseline of some inverse of using Dropout-estimated uncertainty as the weight on examples, which would, presumably, more directly capture the property of "is my model unsure of its prediction on this unlabeled example" - If the presumed need for this is the lack of certainty of the model, that's a non-stationary problem that's going to change throughout the course of training, and so I'd worry that you're basically taking steps in the direction of a moving target - Despite using techniques rooted in meta-learning, it doesn't seem like this models learns anything generalizable - it's learning index-based weights on specific examples, which doesn't give it anything useful it can do with some new data point it finds that it wasn't specifically trained on Given that, I think I'd need to see a much stronger case for dramatic performance benefits for something like this to seem like it was worth the increase in complexity (not to mention computation, even with the optimized Hessian scheme) |

Gaussian Processes in Machine Learning

Rasmussen, Carl Edward

Springer Advanced Lectures on Machine Learning - 2003 via Local Bibsonomy

Keywords: dblp

Rasmussen, Carl Edward

Springer Advanced Lectures on Machine Learning - 2003 via Local Bibsonomy

Keywords: dblp

[link]
In this tutorial paper, Carl E. Rasmussen gives an introduction to Gaussian Process Regression focusing on the definition, the hyperparameter learning and future research directions. A Gaussian Process is completely defined by its mean function $m(\pmb{x})$ and its covariance function (kernel) $k(\pmb{x},\pmb{x}')$. The mean function $m(\pmb{x})$ corresponds to the mean vector $\pmb{\mu}$ of a Gaussian distribution whereas the covariance function $k(\pmb{x}, \pmb{x}')$ corresponds to the covariance matrix $\pmb{\Sigma}$. Thus, a Gaussian Process $f \sim \mathcal{GP}\left(m(\pmb{x}), k(\pmb{x}, \pmb{x}')\right)$ is a generalization of a Gaussian distribution over vectors to a distribution over functions. A random function vector $\pmb{\mathrm{f}}$ can be generated by a Gaussian Process through the following procedure: 1. Compute the components $\mu_i$ of the mean vector $\pmb{\mu}$ for each input $\pmb{x}_i$ using the mean function $m(\pmb{x})$ 2. Compute the components $\Sigma_{ij}$ of the covariance matrix $\pmb{\Sigma}$ using the covariance function $k(\pmb{x}, \pmb{x}')$ 3. A function vector $\pmb{\mathrm{f}} = [f(\pmb{x}_1), \dots, f(\pmb{x}_n)]^T$ can be drawn from the Gaussian distribution $\pmb{\mathrm{f}} \sim \mathcal{N}\left(\pmb{\mu}, \pmb{\Sigma} \right)$ Applying this procedure to regression, means that the resulting function vector $\pmb{\mathrm{f}}$ shall be drawn in a way that a function vector $\pmb{\mathrm{f}}$ is rejected if it does not comply with the training data $\mathcal{D}$. This is achieved by conditioning the distribution on the training data $\mathcal{D}$ yielding the posterior Gaussian Process $f \rvert \mathcal{D} \sim \mathcal{GP}(m_D(\pmb{x}), k_D(\pmb{x},\pmb{x}'))$ for noise-free observations with the posterior mean function $m_D(\pmb{x}) = m(\pmb{x}) + \pmb{\Sigma}(\pmb{X},\pmb{x})^T \pmb{\Sigma}^{-1}(\pmb{\mathrm{f}} - \pmb{\mathrm{m}})$ and the posterior covariance function $k_D(\pmb{x},\pmb{x}')=k(\pmb{x},\pmb{x}') - \pmb{\Sigma}(\pmb{X}, \pmb{x}')$ with $\pmb{\Sigma}(\pmb{X},\pmb{x})$ being a vector of covariances between every training case of $\pmb{X}$ and $\pmb{x}$. Noisy observations $y(\pmb{x}) = f(\pmb{x}) + \epsilon$ with $\epsilon \sim \mathcal{N}(0,\sigma_n^2)$ can be taken into account with a second Gaussian Process with mean $m$ and covariance function $k$ resulting in $f \sim \mathcal{GP}(m,k)$ and $y \sim \mathcal{GP}(m, k + \sigma_n^2\delta_{ii'})$. The figure illustrates the cases of noisy observations (variance at training points) and of noise-free observationshttps://i.imgur.com/BWvsB7T.png (no variance at training points). In the Machine Learning perspective, the mean and the covariance function are parametrised by hyperparameters and provide thus a way to include prior knowledge e.g. knowing that the mean function is a second order polynomial. To find the optimal hyperparameters $\pmb{\theta}$, 1. determine the log marginal likelihood $L= \mathrm{log}(p(\pmb{y} \rvert \pmb{x}, \pmb{\theta}))$, 2. take the first partial derivatives of $L$ w.r.t. the hyperparameters, and 3. apply an optimization algorithm. It should be noted that a regularization term is not necessary for the log marginal likelihood $L$ because it already contains a complexity penalty term. Also, the tradeoff between data-fit and penalty is performed automatically. Gaussian Processes provide a very flexible way for finding a suitable regression model. However, they require the high computational complexity $\mathcal{O}(n^3)$ due to the inversion of the covariance matrix. In addition, the generalization of Gaussian Processes to non-Gaussian likelihoods remains complicated. |

Convolutional Neural Networks for Sentence Classification

Kim, Yoon

arXiv e-Print archive - 2014 via Local Bibsonomy

Keywords: dblp

Kim, Yoon

arXiv e-Print archive - 2014 via Local Bibsonomy

Keywords: dblp

[link]
#### Introduction * The paper demonstrates how simple CNNs, built on top of word embeddings, can be used for sentence classification tasks. * [Link to the paper](https://arxiv.org/abs/1408.5882) * [Implementation](https://github.com/shagunsodhani/CNN-Sentence-Classifier) #### Architecture * Pad input sentences so that they are of the same length. * Map words in the padded sentence using word embeddings (which may be either initialized as zero vectors or initialized as word2vec embeddings) to obtain a matrix corresponding to the sentence. * Apply convolution layer with multiple filter widths and feature maps. * Apply max-over-time pooling operation over the feature map. * Concatenate the pooling results from different layers and feed to a fully-connected layer with softmax activation. * Softmax outputs probabilistic distribution over the labels. * Use dropout for regularisation. #### Hyperparameters * RELU activation for convolution layers * Filter window of 3, 4, 5 with 100 feature maps each. * Dropout - 0.5 * Gradient clipping at 3 * Batch size - 50 * Adadelta update rule. #### Variants * CNN-rand * Randomly initialized word vectors. * CNN-static * Uses pre-trained vectors from word2vec and does not update the word vectors. * CNN-non-static * Same as CNN-static but updates word vectors during training. * CNN-multichannel * Uses two set of word vectors (channels). * One set is updated and other is not updated. #### Datasets * Sentiment analysis datasets for Movie Reviews, Customer Reviews etc. * Classification data for questions. * Maximum number of classes for any dataset - 6 #### Strengths * Good results on benchmarks despite being a simple architecture. * Word vectors obtained by non-static channel have more meaningful representation. #### Weakness * Small data with few labels. * Results are not very detailed or exhaustive. |

Building Machines That Learn and Think Like People

Lake, Brenden M. and Ullman, Tomer D. and Tenenbaum, Joshua B. and Gershman, Samuel J.

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

Lake, Brenden M. and Ullman, Tomer D. and Tenenbaum, Joshua B. and Gershman, Samuel J.

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

[link]
TLDR; The author explore the gap between Deep Learning methods and human learning. The argue that natural intelligence is still the best example of intelligence, so it's worth exploring. To demonstrate their points they explore two challenges: 1. Recognizing new characters and objects 2. Learning to play the game Frostbite. The authors make several arguments: - Humans have an intuitive understanding of physics and psychology (understanding goals and agents) very early on. These two types of "software" help them to learn new tasks quickly. - Humans build causal models of the world instead of just performing pattern recognition. These models allow humans to learn from far fewer examples than current Deep Learning methods. For example, AlphaGo played a billion games or so, Lee Sedol perhaps 50,000. Incorporating compositionality, learning-to-learn (transfer learning) and causality helps humans to build these models. - Humans use both model-free and model-based learning algorithms. |

About