![]() |
Welcome to ShortScience.org! |
![]() ![]() ![]() |
[link]
Rakelly et al. propose a method to do off-policy meta reinforcement learning (rl). The method achieves a 20-100x improvement on sample efficiency compared to on-policy meta rl like MAML+TRPO. The key difficulty for offline meta rl arises from the meta-learning assumption, that meta-training and meta-test time match. However during test time the policy has to explore and sees as such on-policy data which is in contrast to the off-policy data that should be used at meta-training. The key contribution of PEARL is an algorithm that allows for online task inference in a latent variable at train and test time, which is used to train a Soft Actor Critic, a very sample efficient off-policy algorithm, with additional dependence of the latent variable. The implementation of Rakelly et al. proposes to capture knowledge about the current task in a latent stochastic variable Z. A inference network $q_{\Phi}(z \vert c)$ is used to predict the posterior over latents given context c of the current task in from of transition tuples $(s,a,r,s')$ and trained with an information bottleneck. Note that the task inference is done on samples according to a sampling strategy sampling more recent transitions. The latent z is used as an additional input to policy $\pi(a \vert s, z)$ and Q-function $Q(a,s,z)$ of a soft actor critic algorithm which is trained with offline data of the full replay buffer. https://i.imgur.com/wzlmlxU.png So the challenge of differing conditions at test and train times is resolved by sampling the content for the latent context variable at train time only from very recent transitions (which is almost on-policy) and at test time by construction on-policy. Sampling $z \sim q(z \vert c)$ at test time allows for posterior sampling of the latent variable, yielding efficient exploration. The experiments are performed across 6 Mujoco tasks with ProMP, MAML+TRPO and $RL^2$ with PPO as baselines. They show: - PEARL is 20-100x more sample-efficient - the posterior sampling of the latent context variable enables deep exploration that is crucial for sparse reward settings - the inference network could be also a RNN, however it is crucial to train it with uncorrelated transitions instead of trajectories that have high correlated transitions - using a deterministic latent variable, i.e. reducing $q_{\Phi}(z \vert c)$ to a point estimate, leaves the algorithm unable to solve sparse reward navigation tasks which is attributed to the lack of temporally extended exploration. The paper introduces an algorithm that allows to combine meta learning with an off-policy algorithm that dramatically increases the sample-efficiency compared to on-policy meta learning approaches. This increases the chance of seeing meta rl in any sort of real world applications. ![]() |
[link]
This is an interesting paper, investigating (with a team that includes the original authors of the Lottery Ticket paper) whether the initializations that result from BERT pretraining have Lottery Ticket-esque properties with respect to their role as initializations for downstream transfer tasks. As background context, the Lottery Ticket Hypothesis came out of an observation that trained networks could be pruned to remove low-magnitude weights (according to a particular iterative pruning strategy that is a bit more complex than just "prune everything at the end of training"), down to high levels of sparsity (5-40% of original weights, and that those pruned networks not only perform well at the end of training, but also can be "rewound" back to their initialization values (or, in some cases, values from early in training) and retrained in isolation, with the weights you pruned out of the trained network still set to 0, to a comparable level of accuracy. This is thought of as a "winning ticket" because the hypothesis Frankle and Carbin generated is that the reason we benefit from massively overparametrized neural networks is that we are essentially sampling a large number of small subnetworks within the larger ones, and that the more samples we get, the likelier it is we find a "winning ticket" that starts our optimization in a place conducive to further training. In this particular work, the authors investigate a slightly odd variant of the LTH. Instead of looking at training runs that start from random initializations, they look at transfer tasks that start their learning from a massively-pretrained BERT language model. They try to find out: 1) Whether you can find "winning tickets" as subsets of the BERT initialization for a given downstream task 2) Whether those winning tickets generalize, i.e. whether a ticket/pruning mask for one downstream task can also have high performance on another. If that were the case, it would indicate that much of the value of a BERT initialization for transfer tasks could be captured by transferring only a small percentage of BERT's (many) weights, which would be beneficial for compression and mobile applications An interesting wrinkle in the LTH literature is the question of whether true "winning tickets" can be found (in the sense of the network being able to retrain purely from the masked random initializations), or whether it can only retrain to a comparable accuracy by rewinding to an early stage in training, but not the absolute beginning of training. Historically, the former has been difficult and sometimes not possible to find in more complex tasks and networks. https://i.imgur.com/pAF08H3.png One finding of this paper is that, when your starting point is BERT initialization, you can indeed find "winning tickets" in the first sense of being able to rewind the full way back to the beginning of (downstream task) training, and retrain from there. (You can see this above with the results for IMP, Iterative Magnitude Pruning, rolling back to theta-0). This is a bit of an odd finding to parse, since it's not like BERT really is a random initialization itself, but it does suggest that part of the value of BERT is that it contains subnetworks that, from the start of training, are in notional optimization basins that facilitate future training. A negative result in this paper is that, by and large, winning tickets on downstream tasks don't transfer from one to another, and, to the extent that they do transfer, it mostly seems to be according to which tasks had more training samples used in the downstream mask-finding process, rather than any qualitative properties of the task. The one exception to this was if you did further training of the original BERT objective, Masked Language Modeling, as a "downstream task", and took the winning ticket mask from that training, which then transferred to other tasks. This is some validation of the premise that MLM is an unusually good training task in terms of its transfer properties. An important thing to note here is that, even though this hypothesis is intriguing, it's currently quite computationally expensive to find "winning tickets", requiring an iterative pruning and retraining process that takes far longer than an original training run would have. The real goal here, which this is another small step in the hopeful direction of, is being able to analytically specify subnetworks with valuable optimization properties, without having to learn them from data each time (which somewhat defeats the point, if they're only applicable for the task they're trained on, though is potentially useful is they do transfer to some other tasks, as has been shown within a set of image-prediction tasks). ![]() |
[link]
This is an interestingly pragmatic paper that makes a super simple observation. Often, we may want a usable network with fewer parameters, to make our network more easily usable on small devices. It's been observed (by these same authors, in fact), that pruned networks can achieve comparable weights to their fully trained counterparts if you rewind and retrain from early in the training process, to compensate for the loss of the (not ultimately important) pruned weights. This observation has been dubbed the "Lottery Ticket Hypothesis", after the idea that there's some small effective subnetwork you can find if you sample enough networks. Given these two facts - the usefulness of pruning, and the success of weight rewinding - the authors explore the effectiveness of various ways to train after pruning. Current standard practice is to prune low-magnitude weights, and then continue training remaining weights from values they had at pruning time, keeping the final learning rate of the network constant. The authors find that: 1. Weight rewinding, where you rewind weights to *near* their starting value, and then retrain using the learning rates of early in training, outperforms fine tuning from the place weights were when you pruned but, also 2. Learning rate rewinding, where you keep weights as they are, but rewind learning rates to what they were early in training, are actually the most effective for a given amount of training time/search cost To me, this feels a little bit like burying the lede: the takeaway seems to be that when you prune, it's beneficial to make your network more "elastic" (in the metaphor-to-neuroscience sense) so it can more effectively learn to compensate for the removed neurons. So, what was really valuable in weight rewinding was the ability to "heat up" learning on a smaller set of weights, so they could adapt more quickly. And the fact that learning rate rewinding works better than weight rewinding suggests that there is value in the learned weights after all, that value is just outstripped by the benefit of rolling back to old learning rates. All in all, not a super radical conclusion, but a useful and practical one to have so clearly laid out in a paper. ![]() |
[link]
## General Framework Extends T-REX (see [summary](https://www.shortscience.org/paper?bibtexKey=journals/corr/1904.06387&a=muntermulehitch)) so that preferences (rankings) over demonstrations are generated automatically (back to the common IL/IRL setting where we only have access to a set of unlabeled demonstrations). Also derives some theoretical requirements and guarantees for better-than-demonstrator performance. ## Motivations * Preferences over demonstrations may be difficult to obtain in practice. * There is no theoretical understanding of the requirements that lead to outperforming demonstrator. ## Contributions * Theoretical results (with linear reward function) on when better-than-demonstrator performance is possible: 1- the demonstrator must be suboptimal (room for improvement, obviously), 2- the learned reward must be close enough to the reward that the demonstrator is suboptimally optimizing for (be able to accurately capture the intent of the demonstrator), 3- the learned policy (optimal wrt the learned reward) must be close enough to the optimal policy (wrt to the ground truth reward). Obviously if we have 2- and a good enough RL algorithm we should have 3-, so it might be interesting to see if one can derive a requirement from only 1- and 2- (and possibly a good enough RL algo). * Theoretical results (with linear reward function) showing that pairwise preferences over demonstrations reduce the error and ambiguity of the reward learning. They show that without rankings two policies might have equal performance under a learned reward (that makes expert's demonstrations optimal) but very different performance under the true reward (that makes the expert optimal everywhere). Indeed, the expert's demonstration may reveal very little information about the reward of (suboptimal or not) unseen regions which may hurt very much the generalizations (even with RL as it would try to generalize to new states under a totally wrong reward). They also show that pairwise preferences over trajectories effectively give half-space constraints on the feasible reward function domain and thus may decrease exponentially the reward function ambiguity. * Propose a practical way to generate as many ranked demos as desired. ## Additional Assumption Very mild, assumes that a Behavioral Cloning (BC) policy trained on the provided demonstrations is better than a uniform random policy. ## Disturbance-based Reward Extrapolation (D-REX)   They also show that the more noise added to the BC policy the lower the performance of the generated trajs. ## Results Pretty much like T-REX. ![]() |
[link]
Offline reinforcement learning is potentially high-value thing for the machine learning community learn to do well, because there are many applications where it'd be useful to generate a learnt policy for responding to a dynamic environment, but where it'd be too unsafe or expensive to learn in an on-policy or online way, where we continually evaluate our actions in the environment to test their value. In such settings, we'd like to be able to take a batch of existing data - collected from a human demonstrator, or from some other algorithm - and be able to learn a policy from those pre-collected transitions, without being able to query the environment further by taking arbitrary actions. There are two broad strategies for learning a policy from precollected transitions. One is to simply learn to mimic the action policy used by the demonstrator, predicting the action the demonstrator would take in a given state, without making use of reward data at all. This is Behavioral Cloning, and has the advantage of being somewhat more conservative (in terms of not experimenting with possibly-unsafe-or-low-reward actions the demonstrator never took), but this is also a disadvantage, because it's not possible to get higher reward than the demonstrator themselves got if you're simply copying their behavior. Another approach is to learn a Q function - estimating the value of a given action in a given state - using the reward data from the precollected transitions. This can also have some downsides, mostly in the direction of overconfidence. Q value Temporal Difference learning works by using the current reward added to the max Q value over possible next actions as the target for the current-state Q estimate. This tends to lead to overestimates, because regression to the mean effects mean that the highest value Q estimates are disproportionately likely to be noisy (possibly because they correspond to an action with little data in the demonstrator dataset). In on-policy Q learning, this is less problematic, because the agent can take the action associated with their noisily inaccurate estimate, and as a result get more data for that action, and get an estimate that is less noisy in future. But when we're in a fully offline setting, all our learning is completed before we actually start taking actions with our policy, so taking high-uncertainty actions isn't a valuable source of new information, but just risky. The approach suggested by this DeepMind paper - Critic Regularized Regression, or CRR - is essentially a synthesis of these two possible approaches. The method learns a Q function as normal, using temporal difference methods. The distinction in this method comes from how to get a policy, given a learned Q function. Rather than simply taking the action your Q estimate says is highest-value at a particular point, CRR optimizes a policy according to the formula shown below. The f() function is a stand-in for various potential functions, all of which are monotonic with respect to the Q function, meaning they increase when the Q function does. https://i.imgur.com/jGmhYdd.png This basically amounts to a form of a behavioral cloning loss (with the part that maximizes the probability under your policy of the actions sampled from the demonstrator dataset), but weighted or, as the paper terms it, filtered, by the learned Q function. The higher the estimated q value for a transition, the more weight is placed on that transition from the demo dataset having high probability under your policy. Rather than trying to mimic all of the actions of the demonstrator, the policy preferentially tries to mimic the demonstrator actions that it estimates were particularly high-quality. Different f() functions lead to different kinds of filtration. The `binary`version is an indicator function for the Advantage of an action (the Q value for that action at that state minus some reference value for the state, describing how much better the action is than other alternatives at that state) being greater than zero. Another, `exp`, uses exponential weightings which do a more "soft" upweighting or downweighting of transitions based on advantage, rather than the sharp binary of whether an actions advantage is above 1. The authors demonstrate that, on multiple environments from three different environment suites, CRR outperforms other off-policy baselines - either more pure behavioral cloning, or more pure RL - and in many cases does so quite dramatically. They find that the sharper binary weighting scheme does better on simpler tasks, since the trade-off of fewer but higher-quality samples to learn from works there. However, on more complex tasks, the policy benefits from the exp weighting, which still uses and learns from more samples (albeit at lower weights), which introduces some potential mimicking of lower-quality transitions, but at the trade of a larger effective dataset size to learn from. ![]() |