Welcome to ShortScience.org! |

- ShortScience.org is a platform for post-publication discussion aiming to improve accessibility and reproducibility of research ideas.
- The website has 1567 public summaries, mostly in machine learning, written by the community and organized by paper, conference, and year.
- Reading summaries of papers is useful to obtain the perspective and insight of another reader, why they liked or disliked it, and their attempt to demystify complicated sections.
- Also, writing summaries is a good exercise to understand the content of a paper because you are forced to challenge your assumptions when explaining it.
- Finally, you can keep up to date with the flood of research by reading the latest summaries on our Twitter and Facebook pages.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning

Ren, Zhongzheng and Yeh, Raymond A. and Schwing, Alexander G.

- 2020 via Local Bibsonomy

Keywords: dataset, semi-supervised, machine-learning, data, 2020

Ren, Zhongzheng and Yeh, Raymond A. and Schwing, Alexander G.

- 2020 via Local Bibsonomy

Keywords: dataset, semi-supervised, machine-learning, data, 2020

[link]
This paper argues that, in semi-supervised learning, it's suboptimal to use the same weight for all examples (as happens implicitly, when the unsupervised component of the loss for each example is just added together directly. Instead, it tries to learn weights for each specific data example, through a meta-learning-esque process. The form of semi-supervised learning being discussed here is label-based consistency loss, where a labeled image is augmented and run through the current version of the model, and the model is optimized to try to induce the same loss for the augmented image as the unaugmented one. The premise of the authors argument for learning per-example weights is that, ideally, you would enforce consistency loss less on examples where a model was unconfident in its label prediction for an unlabeled example. As a way to solve this, the authors suggest learning a vector of parameters - one for each example in the dataset - where element i in the vector is a weight for element i of the dataset, in the summed-up unsupervised loss. They do this via a two-step process, where first they optimize the parameters of the network given the example weights, and then the optimize the example weights themselves. To optimize example weights, they calculate a gradient of those weights on the post-training validation loss, which requires backpropogating through the optimization process (to determine how different weights might have produced a different gradient, which might in turn have produced better validation loss). This requires calculating the inverse Hessian (second derivative matrix of the loss), which is, generally speaking, a quite costly operation for huge-parameter nets. To lessen this cost, they pretend that only the final layer of weights in the network are being optimized, and so only calculate the Hessian with respect to those weights. They also try to minimize cost by only updating the example weights for the examples that were used during the previous update step, since, presumably those were the only ones we have enough information to upweight or downweight. With this model, the authors achieve modest improvements - performance comparable to or within-error-bounds better than the current state of the art, FixMatch. Overall, I find this paper a little baffling. It's just a crazy amount of effort to throw into something that is a minor improvement. A few issues I have with the approach: - They don't seem to have benchmarked against the simpler baseline of some inverse of using Dropout-estimated uncertainty as the weight on examples, which would, presumably, more directly capture the property of "is my model unsure of its prediction on this unlabeled example" - If the presumed need for this is the lack of certainty of the model, that's a non-stationary problem that's going to change throughout the course of training, and so I'd worry that you're basically taking steps in the direction of a moving target - Despite using techniques rooted in meta-learning, it doesn't seem like this models learns anything generalizable - it's learning index-based weights on specific examples, which doesn't give it anything useful it can do with some new data point it finds that it wasn't specifically trained on Given that, I think I'd need to see a much stronger case for dramatic performance benefits for something like this to seem like it was worth the increase in complexity (not to mention computation, even with the optimized Hessian scheme) |

Variational Dropout and the Local Reparameterization Trick

Blum, Avrim and Haghtalab, Nika and Procaccia, Ariel D.

Neural Information Processing Systems Conference - 2015 via Local Bibsonomy

Keywords: dblp

Blum, Avrim and Haghtalab, Nika and Procaccia, Ariel D.

Neural Information Processing Systems Conference - 2015 via Local Bibsonomy

Keywords: dblp

[link]
This paper starts by introducing a trick to reduce the variance of stochastic gradient variational Bayes (SGVB) estimators. In neural networks, SGVB consists in learning a variational (e.g. diagonal Gaussian) posterior over the weights and biases of neural networks, through a procedure that (for the most part) alternates between adding (Gaussian) noise to the model's parameters and then performing a model update with backprop. The authors present a local reparameterization trick, which exploits the fact that the Gaussian noise added into the weights could instead be added directly into the pre-activation (i.e. before the activation fonction) vectors during forward propagation. This is due to the fact that computing the pre-activation is a linear operation, thus noise at that level is also Gaussian. The advantage of doing so is that, in the context of minibatch training, one can efficiently then add independent noise to the pre-activation vectors for each example of the minibatch. The nature of the local reparameterization trick implies that this is equivalent to using one corrupted version of the weights for each example in the minibatch, something that wouldn't be practical computationally otherwise. This is in fact why, in normal SGVB, previous work would normally use a single corrupted version of the weights for all the minibatch. The authors demonstrate that using the local reparameterization trick yields stochastic gradients with lower variance, which should improve the speed of convergence. Then, the authors demonstrate that the Gaussian version of dropout (one that uses multiplicative Gaussian noise, instead of 0-1 masking noise) can be seen as the local reparameterization trick version of a SGVB objective, with some specific prior and variational posterior. In this SGVB view of Gaussian dropout, the dropout rate is an hyper-parameter of this prior, which can now be tuned by optimizing the variational lower bound of SGVB. In other words, we now have a method to also train the dropout rate! Moreover, it becomes possible to tune an individual dropout rate parameter for each layer, or even each parameter of the model. Experiments on MNIST confirm that tuning that parameter works and allows to reach good performance of various network sizes, compared to using a default dropout rate. ##### My two cents This is another thought provoking connection between Bayesian learning and dropout. Indeed, while Deep GPs have allowed to make a Bayesian connection with regular (binary) dropout learning \cite{journals/corr/GalG15}, this paper sheds light on a neat Bayesian connection for the Gaussian version of dropout. This is great, because it suggests that Gaussian dropout training is another legit way of modeling uncertainty in the parameters of neural networks. It's also nice that that connection also yielded a method for tuning the dropout rate automatically. I hope future work (by the authors or by others) can evaluate the quality of the corresponding variational posterior in terms of estimating uncertainty in the network and, in particular, in obtaining calibrated output probabilities. Little detail: I couldn't figure out whether the authors tuned a single dropout rate for the whole network, or used many rates, for instance one per parameter, as they suggest can be done. |

Semantic Adversarial Examples

Hossein Hosseini and Radha Poovendran

Conference and Computer Vision and Pattern Recognition - 2018 via Local CrossRef

Keywords:

Hossein Hosseini and Radha Poovendran

Conference and Computer Vision and Pattern Recognition - 2018 via Local CrossRef

Keywords:

[link]
Hosseini and Poovendran propose semantic adversarial examples by randomly manipulating hue and saturation of images. In particular, in an iterative algorithm, hue and saturation are randomly perturbed and projected back to their valid range. If this results in mis-classification the perturbed image is returned as the adversarial example and the algorithm is finished; if not, another iteration is run. The result is shown in Figure 1. As can be seen, the structure of the images is retained while hue and saturation changes, resulting in mis-classified images. https://i.imgur.com/kFcmlE3.jpg Figure 1: Examples of the computed semantic adversarial examples. Also find this summary at [davidstutz.de](https://davidstutz.de/category/reading/). |

Recurrent Batch Normalization

Cooijmans, Tim and Ballas, Nicolas and Laurent, César and Courville, Aaron

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

Cooijmans, Tim and Ballas, Nicolas and Laurent, César and Courville, Aaron

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

[link]
This paper describes how to apply the idea of batch normalization (BN) successfully to recurrent neural networks, specifically to LSTM networks. The technique involves the 3 following ideas: **1) Careful initialization of the BN scaling parameter.** While standard practice is to initialize it to 1 (to have unit variance), they show that this situation creates problems with the gradient flow through time, which vanishes quickly. A value around 0.1 (used in the experiments) preserves gradient flow much better. **2) Separate BN for the "hiddens to hiddens pre-activation and for the "inputs to hiddens" pre-activation.** In other words, 2 separate BN operators are applied on each contributions to the pre-activation, before summing and passing through the tanh and sigmoid non-linearities. **3) Use of largest time-step BN statistics for longer test-time sequences.** Indeed, one issue with applying BN to RNNs is that if the input sequences have varying length, and if one uses per-time-step mean/variance statistics in the BN transformation (which is the natural thing to do), it hasn't been clear how do deal with the last time steps of longer sequences seen at test time, for which BN has no statistics from the training set. The paper shows evidence that the pre-activation statistics tend to gradually converge to stationary values over time steps, which supports the idea of simply using the training set's last time step statistics. Among these ideas, I believe the most impactful idea is 1). The papers mentions towards the end that improper initialization of the BN scaling parameter probably explains previous failed attempts to apply BN to recurrent networks. Experiments on 4 datasets confirms the method's success. **My two cents** This is an excellent development for LSTMs. BN has had an important impact on our success in training deep neural networks, and this approach might very well have a similar impact on the success of LSTMs in practice. |

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Xu, Kelvin and Ba, Jimmy and Kiros, Ryan and Cho, Kyunghyun and Courville, Aaron C. and Salakhutdinov, Ruslan and Zemel, Richard S. and Bengio, Yoshua

International Conference on Machine Learning - 2015 via Local Bibsonomy

Keywords: dblp

Xu, Kelvin and Ba, Jimmy and Kiros, Ryan and Cho, Kyunghyun and Courville, Aaron C. and Salakhutdinov, Ruslan and Zemel, Richard S. and Bengio, Yoshua

International Conference on Machine Learning - 2015 via Local Bibsonomy

Keywords: dblp

[link]
TLDR; The authors use an attention mechanism in image caption generation, allowing the decoder RNN focus on specific parts of the image. In order find the correspondence between words and image patches, the RNN uses a lower convolutional layer as its input (before pooling). The authors propose both a "hard" attention (trained using sampling methods) and "soft" attention (trained end-to-end) mechanism, and show qualitatively that the decoder focuses on sensible regions while generating text, adding an additional layer of interpretability to the model. The attention-based models achieve state-of-the art on Flickr8k, Flickr30 and MS Coco. #### Key Points - To find image correspondence use lower convolutional layers to attend to. - Two attention mechanisms: Soft and hard. Depending on evaluation metric (BLEU vs. METERO) one or the other performs better. - Largest data set (MS COCO) takes 3 days to train on Titan Black GPU. Oxford VGG. - Soft attention is same as for seq2seq models. - Attention weights are visualized by upsampling and applying a Gaussian #### Notes/Questions - Would've liked to see an explanation of when/how soft vs. hard attention does better. - What is the computational overhead of using the attention mechanism? Is it significant? |

About