Welcome to ShortScience.org! |

- ShortScience.org is a platform for post-publication discussion aiming to improve accessibility and reproducibility of research ideas.
- The website has 1567 public summaries, mostly in machine learning, written by the community and organized by paper, conference, and year.
- Reading summaries of papers is useful to obtain the perspective and insight of another reader, why they liked or disliked it, and their attempt to demystify complicated sections.
- Also, writing summaries is a good exercise to understand the content of a paper because you are forced to challenge your assumptions when explaining it.
- Finally, you can keep up to date with the flood of research by reading the latest summaries on our Twitter and Facebook pages.

Mask R-CNN

He, Kaiming and Gkioxari, Georgia and Dollár, Piotr and Girshick, Ross B.

arXiv e-Print archive - 2017 via Local Bibsonomy

Keywords: dblp

He, Kaiming and Gkioxari, Georgia and Dollár, Piotr and Girshick, Ross B.

arXiv e-Print archive - 2017 via Local Bibsonomy

Keywords: dblp

[link]
Mask RCNN takes off from where Faster RCNN left, with some augmentations aimed at bettering instance segmentation (which was out of scope for FRCNN). Instance segmentation was achieved remarkably well in *DeepMask* , *SharpMask* and later *Feature Pyramid Networks* (FPN). Faster RCNN was not designed for pixel-to-pixel alignment between network inputs and outputs. This is most evident in how RoIPool , the de facto core operation for attending to instances, performs coarse spatial quantization for feature extraction. Mask RCNN fixes that by introducing RoIAlign in place of RoIPool. #### Methodology Mask RCNN retains most of the architecture of Faster RCNN. It adds the a third branch for segmentation. The third branch takes the output from RoIAlign layer and predicts binary class masks for each class. ##### Major Changes and intutions **Mask prediction** Mask prediction segmentation predicts a binary mask for each RoI using fully convolution - and the stark difference being usage of *sigmoid* activation for predicting final mask instead of *softmax*, implies masks don't compete with each other. This *decouples* segmentation from classification. The class prediction branch is used for class prediction and for calculating loss, the mask of predicted loss is used calculating Lmask. Also, they show that a single class agnostic mask prediction works almost as effective as separate mask for each class, thereby supporting their method of decoupling classification from segmentation **RoIAlign** RoIPool first quantizes a floating-number RoI to the discrete granularity of the feature map, this quantized RoI is then subdivided into spatial bins which are themselves quantized, and finally feature values covered by each bin are aggregated (usually by max pooling). Instead of quantization of the RoI boundaries or bin bilinear interpolation is used to compute the exact values of the input features at four regularly sampled locations in each RoI bin, and aggregate the result (using max or average). **Backbone architecture** Faster RCNN uses a VGG like structure for extracting features from image, weights of which were shared among RPN and region detection layers. Herein, authors experiment with 2 backbone architectures - ResNet based VGG like in FRCNN and ResNet based [FPN](http://www.shortscience.org/paper?bibtexKey=journals/corr/LinDGHHB16) based. FPN uses convolution feature maps from previous layers and recombining them to produce pyramid of feature maps to be used for prediction instead of single-scale feature layer (final output of conv layer before connecting to fc layers was used in Faster RCNN) **Training Objective** The training objective looks like this ![](https://i.imgur.com/snUq73Q.png) Lmask is the addition from Faster RCNN. The method to calculate was mentioned above #### Observation Mask RCNN performs significantly better than COCO instance segmentation winners *without any bells and whiskers*. Detailed results are available in the paper |

DRAW: A Recurrent Neural Network For Image Generation

Gregor, Karol and Danihelka, Ivo and Graves, Alex and Rezende, Danilo Jimenez and Wierstra, Daan

International Conference on Machine Learning - 2015 via Local Bibsonomy

Keywords: dblp

Gregor, Karol and Danihelka, Ivo and Graves, Alex and Rezende, Danilo Jimenez and Wierstra, Daan

International Conference on Machine Learning - 2015 via Local Bibsonomy

Keywords: dblp

[link]
The paper introduces a sequential variational auto-encoder that generates complex images iteratively. The authors also introduce a new spatial attention mechanism that allows the model to focus on small subsets of the image. This new approach for image generation produces images that can’t be distinguished from the training data. #### What is DRAW: The deep recurrent attention writer (DRAW) model has two differences with respect to other variational auto-encoders. First, the encoder and the decoder are recurrent networks. Second, it includes an attention mechanism that restricts the input region observed by the encoder and the output region observed by the decoder. #### What do we gain? The resulting images are greatly improved by allowing a conditional and sequential generation. In addition, the spatial attention mechanism can be used in other contexts to solve the “Where to look?” problem. #### What follows? A possible extension to this model would be to use a convolutional architecture in the encoder or the decoder. Although this might be less useful since we are already restricting the input of the network. #### Like: * As observed in the samples generated by the model, the attention mechanism works effectively by reconstructing images in a local way. * The attention model is fully differentiable. #### Dislike: * I think a better exposition of the attention mechanism would improve this paper. |

Recurrent Batch Normalization

Cooijmans, Tim and Ballas, Nicolas and Laurent, César and Courville, Aaron

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

Cooijmans, Tim and Ballas, Nicolas and Laurent, César and Courville, Aaron

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

[link]
This paper describes how to apply the idea of batch normalization (BN) successfully to recurrent neural networks, specifically to LSTM networks. The technique involves the 3 following ideas: **1) Careful initialization of the BN scaling parameter.** While standard practice is to initialize it to 1 (to have unit variance), they show that this situation creates problems with the gradient flow through time, which vanishes quickly. A value around 0.1 (used in the experiments) preserves gradient flow much better. **2) Separate BN for the "hiddens to hiddens pre-activation and for the "inputs to hiddens" pre-activation.** In other words, 2 separate BN operators are applied on each contributions to the pre-activation, before summing and passing through the tanh and sigmoid non-linearities. **3) Use of largest time-step BN statistics for longer test-time sequences.** Indeed, one issue with applying BN to RNNs is that if the input sequences have varying length, and if one uses per-time-step mean/variance statistics in the BN transformation (which is the natural thing to do), it hasn't been clear how do deal with the last time steps of longer sequences seen at test time, for which BN has no statistics from the training set. The paper shows evidence that the pre-activation statistics tend to gradually converge to stationary values over time steps, which supports the idea of simply using the training set's last time step statistics. Among these ideas, I believe the most impactful idea is 1). The papers mentions towards the end that improper initialization of the BN scaling parameter probably explains previous failed attempts to apply BN to recurrent networks. Experiments on 4 datasets confirms the method's success. **My two cents** This is an excellent development for LSTMs. BN has had an important impact on our success in training deep neural networks, and this approach might very well have a similar impact on the success of LSTMs in practice. |

Fast R-CNN

Girshick, Ross B.

International Conference on Computer Vision - 2015 via Local Bibsonomy

Keywords: dblp

Girshick, Ross B.

International Conference on Computer Vision - 2015 via Local Bibsonomy

Keywords: dblp

[link]
This method is based on improving the speed of R-CNN \cite{conf/cvpr/GirshickDDM14} 1. Where R-CNN would have two different objective functions, Fast R-CNN combines localization and classification losses into a "multi-task loss" in order to speed up training. 2. It also uses a pooling method based on \cite{journals/pami/HeZR015} called the RoI pooling layer that scales the input so the images don't have to be scaled before being set an an input image to the CNN. "RoI max pooling works by dividing the $h \times w$ RoI window into an $H \times W$ grid of sub-windows of approximate size $h/H \times w/W$ and then max-pooling the values in each sub-window into the corresponding output grid cell." 3. Backprop is performed for the RoI pooling layer by taking the argmax of the incoming gradients that overlap the incoming values. This method is further improved by the paper "Faster R-CNN" \cite{conf/nips/RenHGS15} |

Density estimation using Real NVP

Laurent Dinh and Jascha Sohl-Dickstein and Samy Bengio

arXiv e-Print archive - 2016 via Local arXiv

Keywords: cs.LG

**First published:** 2016/05/27 (5 years ago)

**Abstract:** Unsupervised learning of probabilistic models is a central yet challenging
problem in machine learning. Specifically, designing models with tractable
learning, sampling, inference and evaluation is crucial in solving this task.
We extend the space of such models using real-valued non-volume preserving
(real NVP) transformations, a set of powerful invertible and learnable
transformations, resulting in an unsupervised learning algorithm with exact
log-likelihood computation, exact sampling, exact inference of latent
variables, and an interpretable latent space. We demonstrate its ability to
model natural images on four datasets through sampling, log-likelihood
evaluation and latent variable manipulations.
more
less

Laurent Dinh and Jascha Sohl-Dickstein and Samy Bengio

arXiv e-Print archive - 2016 via Local arXiv

Keywords: cs.LG

[link]
This paper presents a novel neural network approach (though see [here](https://www.facebook.com/hugo.larochelle.35/posts/172841743130126?pnref=story) for a discussion on prior work) to density estimation, with a focus on image modeling. At its core, it exploits the following property on the densities of random variables. Let $x$ and $z$ be two random variables of equal dimensionality such that $x = g(z)$, where $g$ is some bijective and deterministic function (we'll note its inverse as $f = g^{-1}$). Then the change of variable formula gives us this relationship between the densities of $x$ and $z$: $p_X(x) = p_Z(z) \left|{\rm det}\left(\frac{\partial g(z)}{\partial z}\right)\right|^{-1}$ Moreover, since the determinant of the Jacobian matrix of the inverse $f$ of a function $g$ is simply the inverse of the Jacobian of the function $g$, we can also write: $p_X(x) = p_Z(f(x)) \left|{\rm det}\left(\frac{\partial f(x)}{\partial x}\right)\right|$ where we've replaced $z$ by its deterministically inferred value $f(x)$ from $x$. So, the core of the proposed model is in proposing a design for bijective functions $g$ (actually, they design its inverse $f$, from which $g$ can be derived by inversion), that have the properties of being easily invertible and having an easy-to-compute determinant of Jacobian. Specifically, the authors propose to construct $f$ from various modules that all preserve these properties and allows to construct highly non-linear $f$ functions. Then, assuming a simple choice for the density $p_Z$ (they use a multidimensional Gaussian), it becomes possible to both compute $p_X(x)$ tractably and to sample from that density, by first samples $z\sim p_Z$ and then computing $x=g(z)$. The building blocks for constructing $f$ are the following: **Coupling layers**: This is perhaps the most important piece. It simply computes as its output $b\odot x + (1-b) \odot (x \odot \exp(l(b\odot x)) + m(b\odot x))$, where $b$ is a binary mask (with half of its values set to 0 and the others to 1) over the input of the layer $x$, while $l$ and $m$ are arbitrarily complex neural networks with input and output layers of equal dimensionality. In brief, for dimensions for which $b_i = 1$ it simply copies the input value into the output. As for the other dimensions (for which $b_i = 0$) it linearly transforms them as $x_i * \exp(l(b\odot x)_i) + m(b\odot x)_i$. Crucially, the bias ($m(b\odot x)_i$) and coefficient ($\exp(l(b\odot x)_i)$) of the linear transformation are non-linear transformations (i.e. the output of neural networks) that only have access to the masked input (i.e. the non-transformed dimensions). While this layer might seem odd, it has the important property that it is invertible and the determinant of its Jacobian is simply $\exp(\sum_i (1-b_i) l(b\odot x)_i)$. See Section 3.3 for more details on that. **Alternating masks**: One important property of coupling layers is that they can be stacked (i.e. composed), and the resulting composition is still a bijection and is invertible (since each layer is individually a bijection) and has a tractable determinant for its Jacobian (since the Jacobian of the composition of functions is simply the multiplication of each function's Jacobian matrix, and the determinant of the product of square matrices is the product of the determinant of each matrix). This is also true, even if the mask $b$ of each layer is different. Thus, the authors propose using masks that alternate across layer, by masking a different subset of (half of) the dimensions. For images, they propose using masks with a checkerboard pattern (see Figure 3). Intuitively, alternating masks are better because then after at least 2 layers, all dimensions have been transformed at least once. **Squeezing operations**: Squeezing operations corresponds to a reorganization of a 2D spatial layout of dimensions into 4 sets of features maps with spatial resolutions reduced by half (see Figure 3). This allows to expose multiple scales of resolutions to the model. Moreover, after a squeezing operation, instead of using a checkerboard pattern for masking, the authors propose to use a per channel masking pattern, so that "the resulting partitioning is not redundant with the previous checkerboard masking". See Figure 3 for an illustration. Overall, the models used in the experiments usually stack a few of the following "chunks" of layers: 1) a few coupling layers with alternating checkboard masks, 2) followed by squeezing, 3) followed by a few coupling layers with alternating channel-wise masks. Since the output of each layers-chunk must technically be of the same size as the input image, this could become expensive in terms of computations and space when using a lot of layers. Thus, the authors propose to explicitly pass on (copy) to the very last layer ($z$) half of the dimensions after each layers-chunk, adding another chunk of layers only on the other half. This is illustrated in Figure 4b. Experiments on CIFAR-10, and 32x32 and 64x64 versions of ImageNet show that the proposed model (coined the real-valued non-volume preserving or Real NVP) has competitive performance (in bits per dimension), though slightly worse than the Pixel RNN. **My Two Cents** The proposed approach is quite unique and thought provoking. Most interestingly, it is the only powerful generative model I know that combines A) a tractable likelihood, B) an efficient / one-pass sampling procedure and C) the explicit learning of a latent representation. While achieving this required a model definition that is somewhat unintuitive, it is nonetheless mathematically really beautiful! I wonder to what extent Real NVP is penalized in its results by the fact that it models pixels as real-valued observations. First, it implies that its estimate of bits/dimensions is an upper bound on what it could be if the uniform sub-pixel noise was integrated out (see Equations 3-4-5 of [this paper](http://arxiv.org/pdf/1511.01844v3.pdf)). Moreover, the authors had to apply a non-linear transformation (${\rm logit}(\alpha + (1-\alpha)\odot x)$) to the pixels, to spread the $[0,255]$ interval further over the reals. Since the Pixel RNN models pixels as discrete observations directly, the Real NVP might be at a disadvantage. I'm also curious to know how easy it would be to do conditional inference with the Real NVP. One could imagine doing approximate MAP conditional inference, by clamping the observed dimensions and doing gradient descent on the log-likelihood with respect to the value of remaining dimensions. This could be interesting for image completion, or for structured output prediction with real-valued outputs in general. I also wonder how expensive that would be. In all cases, I'm looking forward to saying interesting applications and variations of this model in the future! |

About