Welcome to ShortScience.org! 
[link]
# Object detection system overview. https://i.imgur.com/vd2YUy3.png 1. takes an input image, 2. extracts around 2000 bottomup region proposals, 3. computes features for each proposal using a large convolutional neural network (CNN), and then 4. classifies each region using classspecific linear SVMs. * RCNN achieves a mean average precision (mAP) of 53.7% on PASCAL VOC 2010. * On the 200class ILSVRC2013 detection dataset, RCNN’s mAP is 31.4%, a large improvement over OverFeat , which had the previous best result at 24.3%. ## There is a 2 challenges faced in object detection 1. localization problem 2. labeling the data 1 localization problem : * One approach frames localization as a regression problem. they report a mAP of 30.5% on VOC 2007 compared to the 58.5% achieved by our method. * An alternative is to build a slidingwindow detector. considered adopting a slidingwindow approach increases the number of convolutional layers to 5, have very large receptive fields (195 x 195 pixels) and strides (32x32 pixels) in the input image, which makes precise localization within the slidingwindow paradigm. 2 labeling the data: * The conventional solution to this problem is to use unsupervised pretraining, followed by supervise finetuning * supervised pretraining on a large auxiliary dataset (ILSVRC), followed by domain specific finetuning on a small dataset (PASCAL), * finetuning for detection improves mAP performance by 8 percentage points. * Stochastic gradient descent via back propagation was used to effective for training convolutional neural networks (CNNs) ## Object detection with RCNN This system consists of three modules * The first generates categoryindependent region proposals. These proposals define the set of candidate detections available to our detector. * The second module is a large convolutional neural network that extracts a fixedlength feature vector from each region. * The third module is a set of class specific linear SVMs. Module design 1 Region proposals * which detect mitotic cells by applying a CNN to regularlyspaced square crops. * use selective search method in fast mode (Capture All Scales, Diversification, Fast to Compute). * the time spent computing region proposals and features (13s/image on a GPU or 53s/image on a CPU) 2 Feature extraction. * extract a 4096dimensional feature vector from each region proposal using the Caffe implementation of the CNN * Features are computed by forward propagating a meansubtracted 227x227 RGB image through five convolutional layers and two fully connected layers. * warp all pixels in a tight bounding box around it to the required size * The feature matrix is typically 2000x4096 3 Test time detection * At test time, run selective search on the test image to extract around 2000 region proposals (we use selective search’s “fast mode” in all experiments). * warp each proposal and forward propagate it through the CNN in order to compute features. Then, for each class, we score each extracted feature vector using the SVM trained for that class. * Given all scored regions in an image, we apply a greedy nonmaximum suppression (for each class independently) that rejects a region if it has an intersectionover union (IoU) overlap with a higher scoring selected region larger than a learned threshold. ## Training 1 Supervised pretraining: * pretrained the CNN on a large auxiliary dataset (ILSVRC2012 classification) using imagelevel annotations only (bounding box labels are not available for this data) 2 Domainspecific finetuning. * use the stochastic gradient descent (SGD) training of the CNN parameters using only warped region proposals with learning rate of 0.001. 3 Object category classifiers. * use intersectionover union (IoU) overlap threshold method to label a region with The overlap threshold of 0.3. * Once features are extracted and training labels are applied, we optimize one linear SVM per class. * adopt the standard hard negative mining method to fit large training data in memory. ### Results on PASCAL VOC 201012 1 VOC 2010 * compared against four strong baselines including SegDPM, DPM, UVA, Regionlets. * Achieve a large improvement in mAP, from 35.1% to 53.7% mAP, while also being much faster https://i.imgur.com/0dGX9b7.png 2 ILSVRC2013 detection. * ran RCNN on the 200class ILSVRC2013 detection dataset * RCNN achieves a mAP of 31.4% https://i.imgur.com/GFbULx3.png #### Performance layerbylayer, without finetuning 1 pool5 layer * which is the max pooled output of the network’s fifth and final convolutional layer. *The pool5 feature map is 6 x6 x 256 = 9216 dimensional * each pool5 unit has a receptive field of 195x195 pixels in the original 227x227 pixel input 2 Layer fc6 * fully connected to pool5 * it multiplies a 4096x9216 weight matrix by the pool5 feature map (reshaped as a 9216dimensional vector) and then adds a vector of biases 3 Layer fc7 * It is implemented by multiplying the features computed by fc6 by a 4096 x 4096 weight matrix, and similarly adding a vector of biases and applying halfwave rectification #### Performance layerbylayer, with finetuning * CNN’s parameters finetuned on PASCAL. * finetuning increases mAP by 8.0 % points to 54.2% ### Network architectures * 16layer deep network, consisting of 13 layers of 3 _ 3 convolution kernels, with five max pooling layers interspersed, and topped with three fullyconnected layers. We refer to this network as “ONet” for OxfordNet and the baseline as “TNet” for TorontoNet. * RCNN with ONet substantially outperforms RCNN with TNet, increasing mAP from 58.5% to 66.0% * drawback in terms of compute time, with in terms of compute time, with than TNet. 1 The ILSVRC2013 detection dataset * dataset is split into three sets: train (395,918), val (20,121), and test (40,152) #### CNN features for segmentation. * full RCNN: The first strategy (full) ignores the re region’s shape and computes CNN features directly on the warped window. Two regions might have very similar bounding boxes while having very little overlap. * fg RCNN: the second strategy (fg) computes CNN features only on a region’s foreground mask. We replace the background with the mean input so that background regions are zero after mean subtraction. * full+fg RCNN: The third strategy (full+fg) simply concatenates the full and fg features https://i.imgur.com/n1bhmKo.png
1 Comments

[link]
Basically they observe a pattern they call The Filter Lottery (TFL) where the random seed causes a high variance in the training accuracy: ![](http://i.imgur.com/5rWig0H.png) They use the convolutional gradient norm ($CGN$) \cite{conf/fgr/LoC015} to determine how much impact a filter has on the overall classification loss function by taking the derivative of the loss function with respect each weight in the filter. $$CGN(k) = \sum_{i} \left\frac{\partial L}{\partial w^k_i}\right$$ They use the CGN to evaluate the impact of a filter on error, and reinitialize filters when the gradient norm of its weights falls below a specific threshold. 
[link]
**Dropout for layers** sums it up pretty well. The authors built on the idea of [deep residual networks](http://arxiv.org/abs/1512.03385) to use identity functions to skip layers. The main advantages: * Training speedups by about 25% * Huge networks without overfitting ## Evaluation * [CIFAR10](https://www.cs.toronto.edu/~kriz/cifar.html): 4.91% error ([SotA](https://martinthoma.com/sota/#imageclassification): 2.72 %) Training Time: ~15h * [CIFAR100](https://www.cs.toronto.edu/~kriz/cifar.html): 24.58% ([SotA](https://martinthoma.com/sota/#imageclassification): 17.18 %) Training time: < 16h * [SVHN](http://ufldl.stanford.edu/housenumbers/): 1.75% ([SotA](https://martinthoma.com/sota/#imageclassification): 1.59 %)  trained for 50 epochs, begging with a LR of 0.1, divided by 10 after 30 epochs and 35. Training time: < 26h 
[link]
Deeper networks should never have a higher **training** error than smaller ones. In the worst case, the layers should "simply" learn identities. It seems as this is not so easy with conventional networks, as they get much worse with more layers. So the idea is to add identity functions which skip some layers. The network only has to learn the **residuals**. Advantages: * Learning the identity becomes learning 0 which is simpler * Loss in information flow in the forward pass is not a problem anymore * No vanishing / exploding gradient * Identities don't have parameters to be learned ## Evaluation The learning rate starts at 0.1 and is divided by 10 when the error plateaus. Weight decay of 0.0001 ($10^{4}$), momentum of 0.9. They use minibatches of size 128. * ImageNet ILSVRC 2015: 3.57% (ensemble) * CIFAR10: 6.43% * MS COCO: 59.0% mAp@0.5 (ensemble) * PASCAL VOC 2007: 85.6% mAp@0.5 * PASCAL VOC 2012: 83.8% mAp@0.5 ## See also * [DenseNets](http://www.shortscience.org/paper?bibtexKey=journals/corr/1608.06993) 
[link]
The paper introduces two key properties of deep neural networks:  Semantic meaning of individual units.  Earlier works analyzed learnt semantics by finding images that maximally activate individual units.  Authors observe that there is no difference between individual units and random linear combinations of units.  It is the entire space of activations that contains the bulk of semantic information.  Stability of neural networks to small perturbations in input space.  Networks that generalize well are expected to be robust to small perturbations in the input, i.e. imperceptible noise in the input shouldn't change the predicted class.  Authors find that networks can be made to misclassify an image by applying a certain imperceptible perturbation, which is found by maximizing the network's prediction error.  These 'adversarial examples' generalize well to different architectures trained on different data subsets. ## Strengths  The authors propose a way to make networks more robust to small perturbations by training them with adversarial examples in an adaptive manner, i.e. keep changing the pool of adversarial examples during training. In this regard, they draw a connection with hardnegative mining, and a network trained with adversarial examples performs better than others.  Formal description of how to generate adversarial examples and mathematical analysis of a network's stability to perturbations are useful studies. ## Weaknesses / Notes  Two images that are visually indistinguishable to humans but classified differently by the network is indeed an intriguing observation.  The paper feels a little halfbaked in parts, and some ideas could've been presented more clearly. 