Welcome to ShortScience.org! |

- ShortScience.org is a platform for post-publication discussion aiming to improve accessibility and reproducibility of research ideas.
- The website has 1567 public summaries, mostly in machine learning, written by the community and organized by paper, conference, and year.
- Reading summaries of papers is useful to obtain the perspective and insight of another reader, why they liked or disliked it, and their attempt to demystify complicated sections.
- Also, writing summaries is a good exercise to understand the content of a paper because you are forced to challenge your assumptions when explaining it.
- Finally, you can keep up to date with the flood of research by reading the latest summaries on our Twitter and Facebook pages.

Sequence to Sequence Learning with Neural Networks

Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V.

Neural Information Processing Systems Conference - 2014 via Local Bibsonomy

Keywords: dblp

Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V.

Neural Information Processing Systems Conference - 2014 via Local Bibsonomy

Keywords: dblp

[link]
#### Introduction * The paper proposes a general and end-to-end approach for sequence learning that uses two deep LSTMs, one to map input sequence to vector space and another to map vector to the output sequence. * For sequence learning, Deep Neural Networks (DNNs) requires the dimensionality of input and output sequences be known and fixed. This limitation is overcome by using the two LSTMs. * [Link to the paper](https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf) #### Model * Recurrent Neural Networks (RNNs) generalizes feed forward neural networks to sequences. * Given a sequence of inputs $(x_{1}, x_{2}...x_{t})$, RNN computes a sequence of outputs $(y_1, y_2...y_t')$ by iterating over the following equation: $$h_t = sigm(W^{hx}x_t + W^{hh} h_{t-1})$$ $$y^{t} = W^{yh}h_{t}$$ * To map variable length sequences, the input is mapped to a fixed size vector using an RNN and this fixed size vector is mapped to output sequence using another RNN. * Given the long-term dependencies between the two sequences, LSTMs are preferred over RNNs. * LSTMs estimate the conditional probability *p(output sequence | input sequence)* by first mapping the input sequence to a fixed dimensional representation and then computing the probability of output with a standard LST-LM formulation. ##### Differences between the model and standard LSTMs * The model uses two LSTMs (one for input sequence and another for output sequence), thereby increasing the number of model parameters at negligible computing cost. * Model uses Deep LSTMs (4 layers). * The words in the input sequences are reversed to introduce short-term dependencies and to reduce the "minimal time lag". By reversing the word order, the first few words in the source sentence (input sentence) are much closer to first few words in the target sentence (output sentence) thereby making it easier for LSTM to "establish" communication between input and output sentences. #### Experiments * WMT'14 English to French dataset containing 12 million sentences consisting of 348 million French words and 304 million English words. * Model tested on translation task and on the task of re-scoring the n-best results of baseline approach. * Deep LSTMs trained in sentence pairs by maximizing the log probability of a correct translation $T$, given the source sentence $S$ * The training objective is to maximize this log probability, averaged over all the pairs in the training set. * Most likely translation is found by performing a simple, left-to-right beam search for translation. * A hard constraint is enforced on the norm of the gradient to avoid the exploding gradient problem. * Min batches are selected to have sentences of similar lengths to reduce training time. * Model performs better when reversed sentences are used for training. * While the model does not beat the state-of-the-art, it is the first pure neural translation system to outperform a phrase-based SMT baseline. * The model performs well on long sentences as well with only a minor degradation for the largest sentences. * The paper prepares ground for the application of sequence-to-sequence based learning models in other domains by demonstrating how a simple and relatively unoptimised neural model could outperform a mature SMT system on translation tasks. |

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

Eslami, S. M. Ali and Heess, Nicolas and Weber, Theophane and Tassa, Yuval and Kavukcuoglu, Koray and Hinton, Geoffrey E.

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

Eslami, S. M. Ali and Heess, Nicolas and Weber, Theophane and Tassa, Yuval and Kavukcuoglu, Koray and Hinton, Geoffrey E.

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: dblp

[link]
This paper presents an unsupervised generative model, based on the variational autoencoder framework, but where the encoder is a recurrent neural network that sequentially infers the identity, pose and number of objects in some input scene (2D image or 3D scene). In short, this is done by extending the DRAW model to incorporate discrete latent variables that determine whether an additional object is present or not. Since the reparametrization trick cannot be used for discrete variables, the authors estimate the gradient through the sampling operation using a likelihood ratio estimator. Another innovation over DRAW is the application to 3D scenes, in which the decoder is a graphics renderer. Since it is not possible to backpropagate through the renderer, gradients are estimated using finite-difference estimates (which require going through the renderer several times). Experiments are presented where the evaluation is focused on the ability of the model to detect and count the number of objects in the image or scene. **My two cents** This is a nice, natural extension of DRAW. I'm particularly impressed by the results for the 3D scene setting. Despite the fact that setup is obviously synthetic and simplistic, I really surprised that estimating the decoder gradients using finite-differences worked at all. It's also interesting to see that the proposed model does surprisingly well compared to a CNN supervised approach that directly predicts the objects identity and pose. Quite cool! To see the model in action, see [this cute video][1]. [1]: https://www.youtube.com/watch?v=4tc84kKdpY4 |

Temporal Difference Variational Auto-Encoder

Gregor, Karol and Besse, Frederic

arXiv e-Print archive - 2018 via Local Bibsonomy

Keywords: dblp

Gregor, Karol and Besse, Frederic

arXiv e-Print archive - 2018 via Local Bibsonomy

Keywords: dblp

[link]
This was definitely one of the more conceptually nuanced and complicated papers I’ve read recently, and I’ve only got about 60% confidence that I fully grasp all of its intuitions. However, I’m going to try to collect together what I did understand. There is a lot of research into generative models of text or image sequences, and some amount of research into building “models” in the reinforcement learning sense, where your model can predict future observations given current observations and your action. There’s an important underlying distinction here between model-based RL (where you learn a model of how the world evolves, and use that to optimize reward) and model-free RL (where you leave don’t bother explicitly learning a world model, and just directly try to optimize rewards) However, this paper identifies a few limitations of this research. 1) It’s largely focused on predicting observations, rather than predicting *state*. State is a bit of a fuzzy concept, and corresponds to, roughly, “the true underlying state of the game”. An example I like to use is a game where you walk in one door, and right next to it is a second door, which requires you to traverse the space and find rewards and a key before you can open. Now, imagine that the observation of your agent is it looking at the door. If the game doesn’t have any on-screen representation of the fact that you’ve found the key, it won’t be present in your observations, and you’ll observe the same thing at the point you have just entered and once you found the key. However, the state of the game at these two points will be quite different, in that in the latter case, your next states might be “opening the door” rather than “going to collect rewards”. Scenarios like this are referred to broadly as Partially Observable games or environments. This paper wants to build a model of how the game evolves into the future, but it wants to build a model of *state-to-state* evolution, rather than observation-to-observation evolution, since observations are typically both higher-dimensionality and also more noisy/less informative. 2) Past research has typically focused on predicting each next-step observation, rather than teaching models to be able to directly predict a state many steps in the future, without having to roll out the entire sequence of intermediate predictions. This is arguably quite valuable for making models that can predict the long term consequences of their decision This paper approaches that with an approach inspired by the Temporal Difference framework used in much of RL, in which you update your past estimate of future rewards by forcing it to be consistent with the actual observed rewards you encounter in the future. Except, in this model, we sample two a state (z1) and then a state some distance into the future (z2), and try to make our backwards-looking prediction of the state at time 1, taking into account observations that happened in between, match what our prediction was with only the information at time one. An important mechanistic nuance here is the idea of a “belief state”, something that captures all of your knowledge about game history up to a certain point. We can then directly sample a state Zt given the belief state Bt at that point. This isn’t actually possible with a model where we predict a state at time T given the state at time T-1, because the state at time Z-1 is itself a sample, and so in order to get a full distribution of Zt, you have to sample Zt over the distribution of Zt-1, and in order to get the distribution of Zt-1 you have to sample over the distribution of Zt-2, and so on and so on. Instead, we have a separate non-state variable, Bt that is created conditional on all our past observations (through a RNN). https://i.imgur.com/N0Al42r.png All said and done, the mechanics of this model look like: 1) Pick two points along the sequence trajectory 2) Calculate the belief state at each point, and, from that, construct a distribution over states at each timestep using p(z|b) 3) Have an additional model that predicts z1 given z2, b1, and b2 (that is, the future beliefs and states), and push the distribution over z1 from this model to be close to the distribution over z1 given only the information available at time t1 4) Have a model that predicts Z2 given Z1 and the time interval ahead that we’re jumping, and try to have this model be predictive/have high likelihood over the data 5) And, have a model that predicts an observation at time T2 given the state Z2, and train that so that we can convert our way back to an observation, given a state They mostly test it on fairly simple environments, but it’s an interesting idea, and I’d be curious to see other people develop it in future. (A strange aspect of this model is that, as far as I can tell, it’s non-interventionist, in that we’re not actually conditioning over agent action, or trying to learn a policy for an agent. This is purely trying to learn the long term transitions between states) |

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning

Ren, Zhongzheng and Yeh, Raymond A. and Schwing, Alexander G.

- 2020 via Local Bibsonomy

Keywords: dataset, semi-supervised, machine-learning, data, 2020

Ren, Zhongzheng and Yeh, Raymond A. and Schwing, Alexander G.

- 2020 via Local Bibsonomy

Keywords: dataset, semi-supervised, machine-learning, data, 2020

[link]
This paper argues that, in semi-supervised learning, it's suboptimal to use the same weight for all examples (as happens implicitly, when the unsupervised component of the loss for each example is just added together directly. Instead, it tries to learn weights for each specific data example, through a meta-learning-esque process. The form of semi-supervised learning being discussed here is label-based consistency loss, where a labeled image is augmented and run through the current version of the model, and the model is optimized to try to induce the same loss for the augmented image as the unaugmented one. The premise of the authors argument for learning per-example weights is that, ideally, you would enforce consistency loss less on examples where a model was unconfident in its label prediction for an unlabeled example. As a way to solve this, the authors suggest learning a vector of parameters - one for each example in the dataset - where element i in the vector is a weight for element i of the dataset, in the summed-up unsupervised loss. They do this via a two-step process, where first they optimize the parameters of the network given the example weights, and then the optimize the example weights themselves. To optimize example weights, they calculate a gradient of those weights on the post-training validation loss, which requires backpropogating through the optimization process (to determine how different weights might have produced a different gradient, which might in turn have produced better validation loss). This requires calculating the inverse Hessian (second derivative matrix of the loss), which is, generally speaking, a quite costly operation for huge-parameter nets. To lessen this cost, they pretend that only the final layer of weights in the network are being optimized, and so only calculate the Hessian with respect to those weights. They also try to minimize cost by only updating the example weights for the examples that were used during the previous update step, since, presumably those were the only ones we have enough information to upweight or downweight. With this model, the authors achieve modest improvements - performance comparable to or within-error-bounds better than the current state of the art, FixMatch. Overall, I find this paper a little baffling. It's just a crazy amount of effort to throw into something that is a minor improvement. A few issues I have with the approach: - They don't seem to have benchmarked against the simpler baseline of some inverse of using Dropout-estimated uncertainty as the weight on examples, which would, presumably, more directly capture the property of "is my model unsure of its prediction on this unlabeled example" - If the presumed need for this is the lack of certainty of the model, that's a non-stationary problem that's going to change throughout the course of training, and so I'd worry that you're basically taking steps in the direction of a moving target - Despite using techniques rooted in meta-learning, it doesn't seem like this models learns anything generalizable - it's learning index-based weights on specific examples, which doesn't give it anything useful it can do with some new data point it finds that it wasn't specifically trained on Given that, I think I'd need to see a much stronger case for dramatic performance benefits for something like this to seem like it was worth the increase in complexity (not to mention computation, even with the optimized Hessian scheme) |

Deep Residual Learning for Image Recognition

He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian

arXiv e-Print archive - 2015 via Local Bibsonomy

Keywords: dblp

He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian

arXiv e-Print archive - 2015 via Local Bibsonomy

Keywords: dblp

[link]
Deeper networks should never have a higher **training** error than smaller ones. In the worst case, the layers should "simply" learn identities. It seems as this is not so easy with conventional networks, as they get much worse with more layers. So the idea is to add identity functions which skip some layers. The network only has to learn the **residuals**. Advantages: * Learning the identity becomes learning 0 which is simpler * Loss in information flow in the forward pass is not a problem anymore * No vanishing / exploding gradient * Identities don't have parameters to be learned ## Evaluation The learning rate starts at 0.1 and is divided by 10 when the error plateaus. Weight decay of 0.0001 ($10^{-4}$), momentum of 0.9. They use mini-batches of size 128. * ImageNet ILSVRC 2015: 3.57% (ensemble) * CIFAR-10: 6.43% * MS COCO: 59.0% mAp@0.5 (ensemble) * PASCAL VOC 2007: 85.6% mAp@0.5 * PASCAL VOC 2012: 83.8% mAp@0.5 ## See also * [DenseNets](http://www.shortscience.org/paper?bibtexKey=journals/corr/1608.06993) |

About