Welcome to ShortScience.org! |
[link]
This paper presents a method to train a neural network to make predictions for *counterfactual* questions. In short, such questions are questions about what the result of an intervention would have been, had a different choice for the intervention been made (e.g. *Would this patient have lower blood sugar had she received a different medication?*). One approach to tackle this problem is to collect data of the form $(x_i, t_i, y_i^F)$ where $x_i$ describes a situation (e.g. a patient), $t_i$ describes the intervention made (in this paper $t_i$ is binary, e.g. $t_i = 1$ if a new treatment is used while $t_i = 0$ would correspond to using the current treatment) and $y_i^F$ is the factual outcome of the intervention $t_i$ for $x_i$. From this training data, a predictor $h(x,t)$ taking the pair $(x_i, t_i)$ as input and outputting a prediction for $y_i^F$ could be trained. From this predictor, one could imagine answering counterfactual questions by feeding $(x_i, 1-t_i)$ (i.e. a description of the same situation $x_i$ but with the opposite intervention $1-t_i$) to our predictor and comparing the prediction $h(x_i, 1-t_i)$ with $y_i^F$. This would give us an estimate of the change in the outcome, had a different intervention been made, thus providing an answer to our counterfactual question. The authors point out that this scenario is related to that of domain adaptation (more specifically to the special case of covariate shift) in which the input training distribution (here represented by inputs $(x_i,t_i)$) is different from the distribution of inputs that will be fed at test time to our predictor (corresponding to the inputs $(x_i, 1-t_i)$). If the choice of intervention $t_i$ is evenly spread and chosen independently from $x_i$, the distributions become the same. However, in observational studies, the choice of $t_i$ for some given $x_i$ is often not independent of $x_i$ and made according to some unknown policy. This is the situation of interest in this paper. Thus, the authors propose an approach inspired by the domain adaptation literature. Specifically, they propose to have the predictor $h(x,t)$ learn a representation of $x$ that is indiscriminate of the intervention $t$ (see Figure 2 for the proposed neural network architecture). Indeed, this is a notion that is [well established][1] in the domain adaptation literature and has been exploited previously using regularization terms based on [adversarial learning][2] and [maximum mean discrepancy][3]. In this paper, the authors used instead a regularization (noted in the paper as $disc(\Phi_{t=0},\Phi_ {t=1})$) based on the so-called discrepancy distance of [Mansour et al.][4], adapting its use to the case of a neural network. As an example, imagine that in our dataset, a new treatment ($t=1$) was much more frequently used than not ($t=0$) for men. Thus, for men, relatively insufficient evidence for counterfactual inference is expected to be found in our training dataset. Intuitively, we would thus want our predictor to not rely as much on that "feature" of patients when inferring the impact of the treatment. In addition to this term, the authors also propose incorporating an additional regularizer where the prediction $h(x_i,1-t_i)$ on counterfactual inputs is pushed to be as close as possible to the target $y_{j}^F$ of the observation $x_j$ that is closest to $x_i$ **and** actually had the counterfactual intervention $t_j = 1-t_i$. The paper first shows a bound relating the counterfactual generalization error to the discrepancy distance. Moreover, experiments simulating counterfactual inference tasks are presented, in which performance is measured by comparing the predicted treatment effects (as estimated by the difference between the observed effect $y_i^F$ for the observed treatment and the predicted effect $h(x_i, 1-t_i)$ for the opposite treatment) with the real effect (known here because the data is simulated). The paper shows that the proposed approach using neural networks outperforms several baselines on this task. **My two cents** The connection with domain adaptation presented here is really clever and enlightening. This sounds like a very compelling approach to counterfactual inference, which can exploit a lot of previous work on domain adaptation. The paper mentions that selecting the hyper-parameters (such as the regularization terms weights) in this scenario is not a trivial task. Indeed, measuring performance here requires knowing the true difference in intervention outcomes, which in practice usually cannot be known (e.g. two treatments usually cannot be given to the same patient once). In the paper, they somewhat "cheat" by using the ground truth difference in outcomes to measure out-of-sample performance, which the authors admit is unrealistic. Thus, an interesting avenue for future work would be to design practical hyper-parameter selection procedures for this scenario. I wonder whether the *reverse cross-validation* approach we used in our work on our adversarial approach to domain adaptation (see [Section 5.1.2][5]) could successfully be used here. Finally, I command the authors for presenting such a nicely written description of counterfactual inference problem setup in general, I really enjoyed it! [1]: https://papers.nips.cc/paper/2983-analysis-of-representations-for-domain-adaptation.pdf [2]: http://arxiv.org/abs/1505.07818 [3]: http://ijcai.org/Proceedings/09/Papers/200.pdf [4]: http://www.cs.nyu.edu/~mohri/pub/nadap.pdf [5]: http://arxiv.org/pdf/1505.07818v4.pdf#page=16 |
[link]
### What is BN: * Batch Normalization (BN) is a normalization method/layer for neural networks. * Usually inputs to neural networks are normalized to either the range of [0, 1] or [-1, 1] or to mean=0 and variance=1. The latter is called *Whitening*. * BN essentially performs Whitening to the intermediate layers of the networks. ### How its calculated: * The basic formula is $x^* = (x - E[x]) / \sqrt{\text{var}(x)}$, where $x^*$ is the new value of a single component, $E[x]$ is its mean within a batch and `var(x)` is its variance within a batch. * BN extends that formula further to $x^{**} = gamma * x^* +$ beta, where $x^{**}$ is the final normalized value. `gamma` and `beta` are learned per layer. They make sure that BN can learn the identity function, which is needed in a few cases. * For convolutions, every layer/filter/kernel is normalized on its own (linear layer: each neuron/node/component). That means that every generated value ("pixel") is treated as an example. If we have a batch size of N and the image generated by the convolution has width=P and height=Q, we would calculate the mean (E) over `N*P*Q` examples (same for the variance). ### Theoretical effects: * BN reduces *Covariate Shift*. That is the change in distribution of activation of a component. By using BN, each neuron's activation becomes (more or less) a gaussian distribution, i.e. its usually not active, sometimes a bit active, rare very active. * Covariate Shift is undesirable, because the later layers have to keep adapting to the change of the type of distribution (instead of just to new distribution parameters, e.g. new mean and variance values for gaussian distributions). * BN reduces effects of exploding and vanishing gradients, because every becomes roughly normal distributed. Without BN, low activations of one layer can lead to lower activations in the next layer, and then even lower ones in the next layer and so on. ### Practical effects: * BN reduces training times. (Because of less Covariate Shift, less exploding/vanishing gradients.) * BN reduces demand for regularization, e.g. dropout or L2 norm. (Because the means and variances are calculated over batches and therefore every normalized value depends on the current batch. I.e. the network can no longer just memorize values and their correct answers.) * BN allows higher learning rates. (Because of less danger of exploding/vanishing gradients.) * BN enables training with saturating nonlinearities in deep networks, e.g. sigmoid. (Because the normalization prevents them from getting stuck in saturating ranges, e.g. very high/low values for sigmoid.) ![MNIST and neuron activations](https://raw.githubusercontent.com/aleju/papers/master/neural-nets/images/Batch_Normalization__performance_and_activations.png?raw=true "MNIST and neuron activations") *BN applied to MNIST (a), and activations of a randomly selected neuron over time (b, c), where the middle line is the median activation, the top line is the 15th percentile and the bottom line is the 85th percentile.* ------------------------- ### Rough chapter-wise notes * (2) Towards Reducing Covariate Shift * Batch Normalization (*BN*) is a special normalization method for neural networks. * In neural networks, the inputs to each layer depend on the outputs of all previous layers. * The distributions of these outputs can change during the training. Such a change is called a *covariate shift*. * If the distributions stayed the same, it would simplify the training. Then only the parameters would have to be readjusted continuously (e.g. mean and variance for normal distributions). * If using sigmoid activations, it can happen that one unit saturates (very high/low values). That is undesired as it leads to vanishing gradients for all units below in the network. * BN fixes the means and variances of layer inputs to specific values (zero mean, unit variance). * That accomplishes: * No more covariate shift. * Fixes problems with vanishing gradients due to saturation. * Effects: * Networks learn faster. (As they don't have to adjust to covariate shift any more.) * Optimizes gradient flow in the network. (As the gradient becomes less dependent on the scale of the parameters and their initial values.) * Higher learning rates are possible. (Optimized gradient flow reduces risk of divergence.) * Saturating nonlinearities can be safely used. (Optimized gradient flow prevents the network from getting stuck in saturated modes.) * BN reduces the need for dropout. (As it has a regularizing effect.) * How BN works: * BN normalizes layer inputs to zero mean and unit variance. That is called *whitening*. * Naive method: Train on a batch. Update model parameters. Then normalize. Doesn't work: Leads to exploding biases while distribution parameters (mean, variance) don't change. * A proper method has to include the current example *and* all previous examples in the normalization step. * This leads to calculating in covariance matrix and its inverse square root. That's expensive. The authors found a faster way. * (3) Normalization via Mini-Batch Statistics * Each feature (component) is normalized individually. (Due to cost, differentiability.) * Normalization according to: `componentNormalizedValue = (componentOldValue - E[component]) / sqrt(Var(component))` * Normalizing each component can reduce the expressitivity of nonlinearities. Hence the formula is changed so that it can also learn the identiy function. * Full formula: `newValue = gamma * componentNormalizedValue + beta` (gamma and beta learned per component) * E and Var are estimated for each mini batch. * BN is fully differentiable. Formulas for gradients/backpropagation are at the end of chapter 3 (page 4, left). * (3.1) Training and Inference with Batch-Normalized Networks * During test time, E and Var of each component can be estimated using all examples or alternatively with moving averages estimated during training. * During test time, the BN formulas can be simplified to a single linear transformation. * (3.2) Batch-Normalized Convolutional Networks * Authors recommend to place BN layers after linear/fully-connected layers and before the ninlinearities. * They argue that the linear layers have a better distribution that is more likely to be similar to a gaussian. * Placing BN after the nonlinearity would also not eliminate covariate shift (for some reason). * Learning a separate bias isn't necessary as BN's formula already contains a bias-like term (beta). * For convolutions they apply BN equally to all features on a feature map. That creates effective batch sizes of m\*pq, where m is the number of examples in the batch and p q are the feature map dimensions (height, width). BN for linear layers has a batch size of m. * gamma and beta are then learned per feature map, not per single pixel. (Linear layers: Per neuron.) * (3.3) Batch Normalization enables higher learning rates * BN normalizes activations. * Result: Changes to early layers don't amplify towards the end. * BN makes it less likely to get stuck in the saturating parts of nonlinearities. * BN makes training more resilient to parameter scales. * Usually, large learning rates cannot be used as they tend to scale up parameters. Then any change to a parameter amplifies through the network and can lead to gradient explosions. * With BN gradients actually go down as parameters increase. Therefore, higher learning rates can be used. * (something about singular values and the Jacobian) * (3.4) Batch Normalization regularizes the model * Usually: Examples are seen on their own by the network. * With BN: Examples are seen in conjunction with other examples (mean, variance). * Result: Network can't easily memorize the examples any more. * Effect: BN has a regularizing effect. Dropout can be removed or decreased in strength. * (4) Experiments * (4.1) Activations over time ** They tested BN on MNIST with a 100x100x10 network. (One network with BN before each nonlinearity, another network without BN for comparison.) ** Batch Size was 60. ** The network with BN learned faster. Activations of neurons (their means and variances over several examples) seemed to be more consistent during training. ** Generalization of the BN network seemed to be better. * (4.2) ImageNet classification ** They applied BN to the Inception network. ** Batch Size was 32. ** During training they used (compared to original Inception training) a higher learning rate with more decay, no dropout, less L2, no local response normalization and less distortion/augmentation. ** They shuffle the data during training (i.e. each batch contains different examples). ** Depending on the learning rate, they either achieve the same accuracy (as in the non-BN network) in 14 times fewer steps (5x learning rate) or a higher accuracy in 5 times fewer steps (30x learning rate). ** BN enables training of Inception networks with sigmoid units (still a bit lower accuracy than ReLU). ** An ensemble of 6 Inception networks with BN achieved better accuracy than the previously best network for ImageNet. * (5) Conclusion ** BN is similar to a normalization layer suggested by Gülcehre and Bengio. However, they applied it to the outputs of nonlinearities. ** They also didn't have the beta and gamma parameters (i.e. their normalization could not learn the identity function). |
[link]
Lee et al. propose a variant of adversarial training where a generator is trained simultaneously to generated adversarial perturbations. This approach follows the idea that it is possible to “learn” how to generate adversarial perturbations (as in [1]). In this case, the authors use the gradient of the classifier with respect to the input as hint for the generator. Both generator and classifier are then trained in an adversarial setting (analogously to generative adversarial networks), see the paper for details. [1] Omid Poursaeed, Isay Katsman, Bicheng Gao, Serge Belongie. Generative Adversarial Perturbations. ArXiv, abs/1712.02328, 2017. |
[link]
We want to find two matrices $W$ and $H$ such that $V = WH$. Often a goal is to determine underlying patterns in the relationships between the concepts represented by each row and column. $W$ is some $m$ by $n$ matrix and we want the inner dimension of the factorization to be $r$. So $$\underbrace{V}_{m \times n} = \underbrace{W}_{m \times r} \underbrace{H}_{r \times n}$$ Let's consider an example matrix where of three customers (as rows) are associated with three movies (the columns) by a rating value. $$ V = \left[\begin{array}{c c c} 5 & 4 & 1 \\\\ 4 & 5 & 1 \\\\ 2 & 1 & 5 \end{array}\right] $$ We can decompose this into two matrices with $r = 1$. First lets do this without any non-negative constraint using an SVD reshaping matrices based on removing eigenvalues: $$ W = \left[\begin{array}{c c c} -0.656 \\\ -0.652 \\\ -0.379 \end{array}\right], H = \left[\begin{array}{c c c} -6.48 & -6.26 & -3.20\\\\ \end{array}\right] $$ We can also decompose this into two matrices with $r = 1$ subject to the constraint that $w_{ij} \ge 0$ and $h_{ij} \ge 0$. (Note: this is only possible when $v_{ij} \ge 0$): $$ W = \left[\begin{array}{c c c} 0.388 \\\\ 0.386 \\\\ 0.224 \end{array}\right], H = \left[\begin{array}{c c c} 11.22 & 10.57 & 5.41 \\\\ \end{array}\right] $$ Both of these $r=1$ factorizations reconstruct matrix $V$ with the same error. $$ V \approx WH = \left[\begin{array}{c c c} 4.36 & 4.11 & 2.10 \\\ 4.33 & 4.08 & 2.09 \\\ 2.52 & 2.37 & 1.21 \\\ \end{array}\right] $$ If they both yield the same reconstruction error then why is a non-negativity constraint useful? We can see above that it is easy to observe patterns in both factorizations such as similar customers and similar movies. `TODO: motivate why NMF is better` #### Paper Contribution This paper discusses two approaches for iteratively creating a non-negative $W$ and $H$ based on random initial matrices. The paper discusses a multiplicative update rule where the elements of $W$ and $H$ are iteratively transformed by scaling each value such that error is not increased. The multiplicative approach is discussed in contrast to an additive gradient decent based approach where small corrections are iteratively applied. The multiplicative approach can be reduced to this by setting the learning rate ($\eta$) to a ratio that represents the magnitude of the element in $H$ to the scaling factor of $W$ on $H$. ### Still a draft |
[link]
Federated learning is the problem of training a model that incorporates updates from the data of many individuals, without having direct access to that data, or having to store it. This is potentially desirable both for reasons of privacy (not wanting to have access to private data in a centralized way), and for potential benefits to transport cost when data needed to train models exists on a user's device, and would require a lot of bandwidth to transfer to a centralized server. Historically, the default way to do Federated Learning was with an algorithm called FedSGD, which worked by: - Sending a copy of the current model to each device/client - Calculating a gradient update to be applied on top of that current model given a batch of data sampled from the client's device - Sending that gradient back to the central server - Averaging those gradients and applying them all at once to a central model The authors note that this approach is equivalent to one where a single device performs a step of gradient descent locally, sends the resulting *model* back to the the central server, and performs model averaging by averaging the parameter vectors there. Given that, and given their observation that, in federated learning, communication of gradients and models is generally much more costly than the computation itself (since the computation happens across so many machines), they ask whether the communication required to get to a certain accuracy could be better optimized by performing multiple steps of gradient calculation and update on a given device, before sending the resulting model back to a central server to be average with other clients models. Specifically, their algorithm, FedAvg, works by: - Dividing the data on a given device into batches of size B - Calculating an update on each batch and applying them sequentially to the starting model sent over the wire from the server - Repeating this for E epochs Conceptually, this should work perfectly well in the world where data from each batch is IID - independently drawn from the same distribution. But that is especially unlikely to be true in the case of federated learning, when a given user and device might have very specialized parts of the data space, and prior work has shown that there exist pathological cases where averaged models can perform worse than either model independently, even *when* the IID condition is met. The authors experiment empirically ask the question whether these sorts of pathological cases arise when simulating a federated learning procedure over MNIST and a language model trained on Shakespeare, trying over a range of hyperparameters (specifically B and E), and testing the case where data is heavily non-IID (in their case: where different "devices" had non-overlapping sets of digits). https://i.imgur.com/xq9vi8S.png They show that, in both the IID and non-IID settings, they are able to reach their target accuracy, and are able to do so with many fewer rounds of communciation than are required by FedSGD (where an update is sent over the wire, and a model sent back, for each round of calculation done on the device.) The authors argue that this shows the practical usefulness of a Federated Learning approach that does more computation on individual devices before updating, even in the face of theoretical pathological cases. |