Welcome to ShortScience.org! |

- ShortScience.org is a platform for post-publication discussion aiming to improve accessibility and reproducibility of research ideas.
- The website has 1584 public summaries, mostly in machine learning, written by the community and organized by paper, conference, and year.
- Reading summaries of papers is useful to obtain the perspective and insight of another reader, why they liked or disliked it, and their attempt to demystify complicated sections.
- Also, writing summaries is a good exercise to understand the content of a paper because you are forced to challenge your assumptions when explaining it.
- Finally, you can keep up to date with the flood of research by reading the latest summaries on our Twitter and Facebook pages.

Convolutional Neural Networks for Sentence Classification

Kim, Yoon

arXiv e-Print archive - 2014 via Local Bibsonomy

Keywords: dblp

Kim, Yoon

arXiv e-Print archive - 2014 via Local Bibsonomy

Keywords: dblp

[link]
#### Introduction * The paper demonstrates how simple CNNs, built on top of word embeddings, can be used for sentence classification tasks. * [Link to the paper](https://arxiv.org/abs/1408.5882) * [Implementation](https://github.com/shagunsodhani/CNN-Sentence-Classifier) #### Architecture * Pad input sentences so that they are of the same length. * Map words in the padded sentence using word embeddings (which may be either initialized as zero vectors or initialized as word2vec embeddings) to obtain a matrix corresponding to the sentence. * Apply convolution layer with multiple filter widths and feature maps. * Apply max-over-time pooling operation over the feature map. * Concatenate the pooling results from different layers and feed to a fully-connected layer with softmax activation. * Softmax outputs probabilistic distribution over the labels. * Use dropout for regularisation. #### Hyperparameters * RELU activation for convolution layers * Filter window of 3, 4, 5 with 100 feature maps each. * Dropout - 0.5 * Gradient clipping at 3 * Batch size - 50 * Adadelta update rule. #### Variants * CNN-rand * Randomly initialized word vectors. * CNN-static * Uses pre-trained vectors from word2vec and does not update the word vectors. * CNN-non-static * Same as CNN-static but updates word vectors during training. * CNN-multichannel * Uses two set of word vectors (channels). * One set is updated and other is not updated. #### Datasets * Sentiment analysis datasets for Movie Reviews, Customer Reviews etc. * Classification data for questions. * Maximum number of classes for any dataset - 6 #### Strengths * Good results on benchmarks despite being a simple architecture. * Word vectors obtained by non-static channel have more meaningful representation. #### Weakness * Small data with few labels. * Results are not very detailed or exhaustive. |

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe and Christian Szegedy

arXiv e-Print archive - 2015 via Local arXiv

Keywords: cs.LG

**First published:** 2015/02/11 (9 years ago)

**Abstract:** Training Deep Neural Networks is complicated by the fact that the
distribution of each layer's inputs changes during training, as the parameters
of the previous layers change. This slows down the training by requiring lower
learning rates and careful parameter initialization, and makes it notoriously
hard to train models with saturating nonlinearities. We refer to this
phenomenon as internal covariate shift, and address the problem by normalizing
layer inputs. Our method draws its strength from making normalization a part of
the model architecture and performing the normalization for each training
mini-batch. Batch Normalization allows us to use much higher learning rates and
be less careful about initialization. It also acts as a regularizer, in some
cases eliminating the need for Dropout. Applied to a state-of-the-art image
classification model, Batch Normalization achieves the same accuracy with 14
times fewer training steps, and beats the original model by a significant
margin. Using an ensemble of batch-normalized networks, we improve upon the
best published result on ImageNet classification: reaching 4.9% top-5
validation error (and 4.8% test error), exceeding the accuracy of human raters.
more
less

Sergey Ioffe and Christian Szegedy

arXiv e-Print archive - 2015 via Local arXiv

Keywords: cs.LG

[link]
### What is BN: * Batch Normalization (BN) is a normalization method/layer for neural networks. * Usually inputs to neural networks are normalized to either the range of [0, 1] or [-1, 1] or to mean=0 and variance=1. The latter is called *Whitening*. * BN essentially performs Whitening to the intermediate layers of the networks. ### How its calculated: * The basic formula is $x^* = (x - E[x]) / \sqrt{\text{var}(x)}$, where $x^*$ is the new value of a single component, $E[x]$ is its mean within a batch and `var(x)` is its variance within a batch. * BN extends that formula further to $x^{**} = gamma * x^* +$ beta, where $x^{**}$ is the final normalized value. `gamma` and `beta` are learned per layer. They make sure that BN can learn the identity function, which is needed in a few cases. * For convolutions, every layer/filter/kernel is normalized on its own (linear layer: each neuron/node/component). That means that every generated value ("pixel") is treated as an example. If we have a batch size of N and the image generated by the convolution has width=P and height=Q, we would calculate the mean (E) over `N*P*Q` examples (same for the variance). ### Theoretical effects: * BN reduces *Covariate Shift*. That is the change in distribution of activation of a component. By using BN, each neuron's activation becomes (more or less) a gaussian distribution, i.e. its usually not active, sometimes a bit active, rare very active. * Covariate Shift is undesirable, because the later layers have to keep adapting to the change of the type of distribution (instead of just to new distribution parameters, e.g. new mean and variance values for gaussian distributions). * BN reduces effects of exploding and vanishing gradients, because every becomes roughly normal distributed. Without BN, low activations of one layer can lead to lower activations in the next layer, and then even lower ones in the next layer and so on. ### Practical effects: * BN reduces training times. (Because of less Covariate Shift, less exploding/vanishing gradients.) * BN reduces demand for regularization, e.g. dropout or L2 norm. (Because the means and variances are calculated over batches and therefore every normalized value depends on the current batch. I.e. the network can no longer just memorize values and their correct answers.) * BN allows higher learning rates. (Because of less danger of exploding/vanishing gradients.) * BN enables training with saturating nonlinearities in deep networks, e.g. sigmoid. (Because the normalization prevents them from getting stuck in saturating ranges, e.g. very high/low values for sigmoid.) ![MNIST and neuron activations](https://raw.githubusercontent.com/aleju/papers/master/neural-nets/images/Batch_Normalization__performance_and_activations.png?raw=true "MNIST and neuron activations") *BN applied to MNIST (a), and activations of a randomly selected neuron over time (b, c), where the middle line is the median activation, the top line is the 15th percentile and the bottom line is the 85th percentile.* ------------------------- ### Rough chapter-wise notes * (2) Towards Reducing Covariate Shift * Batch Normalization (*BN*) is a special normalization method for neural networks. * In neural networks, the inputs to each layer depend on the outputs of all previous layers. * The distributions of these outputs can change during the training. Such a change is called a *covariate shift*. * If the distributions stayed the same, it would simplify the training. Then only the parameters would have to be readjusted continuously (e.g. mean and variance for normal distributions). * If using sigmoid activations, it can happen that one unit saturates (very high/low values). That is undesired as it leads to vanishing gradients for all units below in the network. * BN fixes the means and variances of layer inputs to specific values (zero mean, unit variance). * That accomplishes: * No more covariate shift. * Fixes problems with vanishing gradients due to saturation. * Effects: * Networks learn faster. (As they don't have to adjust to covariate shift any more.) * Optimizes gradient flow in the network. (As the gradient becomes less dependent on the scale of the parameters and their initial values.) * Higher learning rates are possible. (Optimized gradient flow reduces risk of divergence.) * Saturating nonlinearities can be safely used. (Optimized gradient flow prevents the network from getting stuck in saturated modes.) * BN reduces the need for dropout. (As it has a regularizing effect.) * How BN works: * BN normalizes layer inputs to zero mean and unit variance. That is called *whitening*. * Naive method: Train on a batch. Update model parameters. Then normalize. Doesn't work: Leads to exploding biases while distribution parameters (mean, variance) don't change. * A proper method has to include the current example *and* all previous examples in the normalization step. * This leads to calculating in covariance matrix and its inverse square root. That's expensive. The authors found a faster way. * (3) Normalization via Mini-Batch Statistics * Each feature (component) is normalized individually. (Due to cost, differentiability.) * Normalization according to: `componentNormalizedValue = (componentOldValue - E[component]) / sqrt(Var(component))` * Normalizing each component can reduce the expressitivity of nonlinearities. Hence the formula is changed so that it can also learn the identiy function. * Full formula: `newValue = gamma * componentNormalizedValue + beta` (gamma and beta learned per component) * E and Var are estimated for each mini batch. * BN is fully differentiable. Formulas for gradients/backpropagation are at the end of chapter 3 (page 4, left). * (3.1) Training and Inference with Batch-Normalized Networks * During test time, E and Var of each component can be estimated using all examples or alternatively with moving averages estimated during training. * During test time, the BN formulas can be simplified to a single linear transformation. * (3.2) Batch-Normalized Convolutional Networks * Authors recommend to place BN layers after linear/fully-connected layers and before the ninlinearities. * They argue that the linear layers have a better distribution that is more likely to be similar to a gaussian. * Placing BN after the nonlinearity would also not eliminate covariate shift (for some reason). * Learning a separate bias isn't necessary as BN's formula already contains a bias-like term (beta). * For convolutions they apply BN equally to all features on a feature map. That creates effective batch sizes of m\*pq, where m is the number of examples in the batch and p q are the feature map dimensions (height, width). BN for linear layers has a batch size of m. * gamma and beta are then learned per feature map, not per single pixel. (Linear layers: Per neuron.) * (3.3) Batch Normalization enables higher learning rates * BN normalizes activations. * Result: Changes to early layers don't amplify towards the end. * BN makes it less likely to get stuck in the saturating parts of nonlinearities. * BN makes training more resilient to parameter scales. * Usually, large learning rates cannot be used as they tend to scale up parameters. Then any change to a parameter amplifies through the network and can lead to gradient explosions. * With BN gradients actually go down as parameters increase. Therefore, higher learning rates can be used. * (something about singular values and the Jacobian) * (3.4) Batch Normalization regularizes the model * Usually: Examples are seen on their own by the network. * With BN: Examples are seen in conjunction with other examples (mean, variance). * Result: Network can't easily memorize the examples any more. * Effect: BN has a regularizing effect. Dropout can be removed or decreased in strength. * (4) Experiments * (4.1) Activations over time ** They tested BN on MNIST with a 100x100x10 network. (One network with BN before each nonlinearity, another network without BN for comparison.) ** Batch Size was 60. ** The network with BN learned faster. Activations of neurons (their means and variances over several examples) seemed to be more consistent during training. ** Generalization of the BN network seemed to be better. * (4.2) ImageNet classification ** They applied BN to the Inception network. ** Batch Size was 32. ** During training they used (compared to original Inception training) a higher learning rate with more decay, no dropout, less L2, no local response normalization and less distortion/augmentation. ** They shuffle the data during training (i.e. each batch contains different examples). ** Depending on the learning rate, they either achieve the same accuracy (as in the non-BN network) in 14 times fewer steps (5x learning rate) or a higher accuracy in 5 times fewer steps (30x learning rate). ** BN enables training of Inception networks with sigmoid units (still a bit lower accuracy than ReLU). ** An ensemble of 6 Inception networks with BN achieved better accuracy than the previously best network for ImageNet. * (5) Conclusion ** BN is similar to a normalization layer suggested by Gülcehre and Bengio. However, they applied it to the outputs of nonlinearities. ** They also didn't have the beta and gamma parameters (i.e. their normalization could not learn the identity function). |

An Experimental Evaluation of the Generalizing Capabilities of Process Discovery Techniques and Black-Box Sequence Models

Niek Tax and Sebastiaan J. van Zelst and Irene Teinemaa

Lecture Notes in Business Information Processing - 2018 via Local CrossRef

Keywords:

Niek Tax and Sebastiaan J. van Zelst and Irene Teinemaa

Lecture Notes in Business Information Processing - 2018 via Local CrossRef

Keywords:

[link]
# Contributions The contribution of this paper is three-fold: 1. We present a method to use *process models* as interpretable sequence models that have a stronger notion of interpretability than what is generally used in the machine learning field (see Section *process models* below), 2. We show that this approach enables the comparison of traditional sequence models (RNNs, LSTMs, Markov Models) with techniques from the research field of *automated process discovery*, 3. We show on a collection of three real-life datasets that a better fit of sequence data can be obtained with LSTMs than with techniques from the *automated process discovery* field # Process Models Process models are visually interpretable models that model sequence data in such a way that the generated model is represented in a notation that has *formal semantics*, i.e., it is well-defined which sequences are and which aren't allowed by the model. Below you see an example of a Petri net (a type of model with formal semantics) which allows for the sequences <A,B,C>, <A,C,B>, <D,B,C>, and <D,C,B>. https://i.imgur.com/SbVYMvX.png For an overview of automated process discovery algorithms to mine a process model from sequnce data, we refer to [this recent survey and benchmark paper](https://ieeexplore.ieee.org/abstract/document/8368306/). |

Deep Networks with Stochastic Depth

Huang, Gao and Sun, Yu and Liu, Zhuang and Sedra, Daniel and Weinberger, Kilian

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: deeplearning, acreuser

Huang, Gao and Sun, Yu and Liu, Zhuang and Sedra, Daniel and Weinberger, Kilian

arXiv e-Print archive - 2016 via Local Bibsonomy

Keywords: deeplearning, acreuser

[link]
**Dropout for layers** sums it up pretty well. The authors built on the idea of [deep residual networks](http://arxiv.org/abs/1512.03385) to use identity functions to skip layers. The main advantages: * Training speed-ups by about 25% * Huge networks without overfitting ## Evaluation * [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html): 4.91% error ([SotA](https://martin-thoma.com/sota/#image-classification): 2.72 %) Training Time: ~15h * [CIFAR-100](https://www.cs.toronto.edu/~kriz/cifar.html): 24.58% ([SotA](https://martin-thoma.com/sota/#image-classification): 17.18 %) Training time: < 16h * [SVHN](http://ufldl.stanford.edu/housenumbers/): 1.75% ([SotA](https://martin-thoma.com/sota/#image-classification): 1.59 %) - trained for 50 epochs, begging with a LR of 0.1, divided by 10 after 30 epochs and 35. Training time: < 26h |

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Ioffe, Sergey and Szegedy, Christian

International Conference on Machine Learning - 2015 via Local Bibsonomy

Keywords: dblp

Ioffe, Sergey and Szegedy, Christian

International Conference on Machine Learning - 2015 via Local Bibsonomy

Keywords: dblp

[link]
The main contribution of this paper is introducing a new transformation that the authors call Batch Normalization (BN). The need for BN comes from the fact that during the training of deep neural networks (DNNs) the distribution of each layer’s input change. This phenomenon is called internal covariate shift (ICS). #### What is BN? Normalize each (scalar) feature independently with respect to the mean and variance of the mini batch. Scale and shift the normalized values with two new parameters (per activation) that will be learned. The BN consists of making normalization part of the model architecture. #### What do we gain? According to the author, the use of BN provides a great speed up in the training of DNNs. In particular, the gains are greater when it is combined with higher learning rates. In addition, BN works as a regularizer for the model which allows to use less dropout or less L2 normalization. Furthermore, since the distribution of the inputs is normalized, it also allows to use sigmoids as activation functions without the saturation problem. #### What follows? This seems to be specially promising for training recurrent neural networks (RNNs). The vanishing and exploding gradient problems \cite{journals/tnn/BengioSF94} have their origin in the iteration of transformation that scale up or down the activations in certain directions (eigenvectors). It seems that this regularization would be specially useful in this context since this would allow the gradient to flow more easily. When we unroll the RNNs, we usually have ultra deep networks. #### Like * Simple idea that seems to improve training. * Makes training faster. * Simple to implement. Probably. * You can be less careful with initialization. #### Dislike * Does not work with stochastic gradient descent (minibatch size = 1). * This could reduce the parallelism of the algorithm since now all the examples in a mini batch are tied. * Results on ensemble of networks for ImageNet makes it harder to evaluate the relevance of BN by itself. (Although they do mention the performance of a single model). |

About